A) Rs. 4050 | B) Rs. 2121 |

C) Rs. 5040 | D) Rs. 3550 |

Explanation:

Let the ratio amount be 'p'

7p - 3p = 2700

4p = 2700

p = 675

R's Share = 675 × 6 = Rs. 4050

A) 1564 | B) 1600 |

C) 1632 | D) 1714 |

Explanation:

Let O's share = **Rs. P**

=> N's share = $\frac{\mathbf{75}}{\mathbf{100}}\mathbf{}\mathbf{x}\mathbf{}\mathbf{P}\mathbf{}\mathbf{=}\mathbf{}\frac{\mathbf{3}\mathbf{P}}{\mathbf{4}}$

M's share = $\frac{\mathbf{5}}{\mathbf{4}}\mathbf{}\mathbf{x}\mathbf{}\frac{\mathbf{3}\mathbf{P}}{\mathbf{4}}\mathbf{}\mathbf{=}\mathbf{}\frac{\mathbf{15}\mathbf{P}}{\mathbf{16}}$

$\frac{\mathbf{15}\mathbf{P}}{\mathbf{16}}\mathbf{}\mathbf{+}\mathbf{}\frac{\mathbf{3}\mathbf{P}}{\mathbf{4}}\mathbf{}\mathbf{+}\mathbf{}\mathbf{P}\mathbf{}\mathbf{=}\mathbf{}\mathbf{4300}\phantom{\rule{0ex}{0ex}}\mathbf{=}\mathbf{}\mathbf{}\mathbf{P}\mathbf{}\mathbf{=}\mathbf{}\mathbf{4300}\mathbf{}\mathbf{x}\mathbf{}\frac{\mathbf{16}}{\mathbf{43}}\mathbf{}\mathbf{=}\mathbf{}\mathbf{1600}$

A) Rs. 23,500 | B) Rs. 19,780 |

C) Rs. 21,700 | D) Rs. 20,050 |

Explanation:

Given **A & B in partnership**

A Invests 116000 for 12 months

=> A's share = 116000 x 12 = 13,92,000

B Invests for 6 months

=> B's share = 144000 x 6 = 8,64,000

Their Ratio = 1392 : 864 = 29 : 18

Let the Annual profit = P

Given B's share = Rs. 9000

=> 18/47 x P = 9000

=> P = 9000 x 47/18

=> P = 23,500

Hence, Overall profit = **P = Rs. 23,500**

A) Rs. 8,640 | B) Rs. 9,850 |

C) Rs. 10,000 | D) Rs. 11,220 |

Explanation:

Ratio of investments of A, B & C = 2×6+4×6 : 3×12 : 4×12

= 36 : 36 : 48

= 6 : 6 : 8

But given that the annual profit of B is Rs. 3000

=> 6 ratio = 3000

Then for the total annual profit of partners is

20 ratio = 3000 x 20/6 = 10,000.

A) Rs. 450 | B) Rs. 1020 |

C) Rs. 765 | D) Rs. 1530 |

Explanation:

Ratio of investments of A, B & C =>

Share of C = 1530

Share of B = 765

Share of A = 1020

A) 50000 | B) 48000 |

C) 38000 | D) 40000 |

Explanation:

Here from the given information,

The ratio of investments of Rajeev, Deepu & Shakti is

R : D : S = (10000 × 12) : (12000 × 10) : (7200 × 8)

= 25 : 25 : 12

Now the Profit = 2 × (72000-10000) = 124000

Share of Rajeev = 124000 x 25/62 = 48000

Profit of Rajeev = 48000 - 10000 = 38000

A) Rs. 9580.25 | B) Rs. 10600 |

C) Rs. 10664.15 | D) Rs. 11060.48 |

Explanation:

Profit received by Chinna as working partner = 14.5% of Rs. 19600

= 14.5x19600/100 = Rs. 2842

Balance in profit = 19600-2842 = Rs. 16758

Ratio of investment of Chinna & Munna = 80,000 : 1,40,000 = 4 : 7

Hence share of Chinna in investment = 4x16758/100 = Rs. 6093.85

Therefore, Share of Munna = 19600 - 2842 - 6093.85 = Rs. 10664.15

A) Rs. 90500 | B) Rs. 87500 |

C) Rs. 88900 | D) Rs. 90000 |

Explanation:

Ratio of investments for 1 year

=> (P : Q : R) = (2x2 + 2.4x10) : (3x2 + 3.3x10) : (5x12)

=> (P : Q : R) = 28 : 39 : 60

Now R share = 190500 x 60/127 = Rs. 90000.

A) Rs. 9500 | B) Rs. 10600 |

C) Rs. 7500 | D) Rs. 8900 |

Explanation:

Given initial investments ratio = 2 : 3 : 4

At the end of 6 months, A invested an amount such that his total capital became equal to B's initial capital investment

i.e, upto 6 months A's investment is 2 and after 6 months his invstment is 3 = B's investment

Now, Ratio of investment for one year

=> A : B : C = (2×6 + 3×6) : (3×12) : (4×12)

= 30 : 36 : 48

= 5 : 6 : 8

But given B's profit = 3000

=> 6 ratio = 3000

For total => 19 ratio = Rs. 9500.