A) 22 mts | B) 28 mts |

C) 32 mts | D) 34 mts |

Explanation:

let 'b' be the Length of bridge from cow to the near end of the bridge and 'a' be the distance of the train from the bridge.

'x' be speed of cow => '4x' speed of train

Then the total length of the bridge 2b + 10.

(a-2)/4x = b/x

=> a-2 = 4b........(1)

Now if it had run in opposite direction

(a+2b+10-2)/4x = (b+10-2)/x

=> a - 2b = 24......(2)

Solving (1) and (2)

b = 11 ,

Therefore length of the bridge is 2 x 11 + 10 = 32mts.

A) 13 | B) 26 |

C) 39 | D) 52 |

Explanation:

The total cards in the deck are** 52**. These 52 cards are divided into 4 suits of 13 cards in each suit. Two Red suits and Two black suits.

**Red suits ::** Heart suit and Diamond suit **= 26**

**Black suits ::** Spade suit and Club suit **= 26.**

A) 20 | B) 30 |

C) 18 | D) 24 |

Explanation:

6 choose 3 means number of possible unordered combinations when 3 items are selected from 6 available items i.e, nothing but **6C3.**

Now **6C3 = 6 x 5 x 4/3 x 2 x 1 = 120/6 = 20.**

A) 0 | B) 19 |

C) 29 | D) 91 |

Explanation:

Here in the given numbers 91 is a Composite number. Since it has factors of 7 and 13 other than 1 and itself.

**Composite Numbers :**

A composite number is a positive integer which is not prime (i.e., which has factors other than 1 and itself).

Examples :: 4, 6, 8, 12, 14, 15, 18, 20, ...

A) B and C together are sufficient | B) Any one pair of A and B, B and C or C and A is sufficient |

C) C and A together are sufficient | D) A and B together are sufficient |

Explanation:

From the given data,

Let the two gits of a number be x & y

A) x + y = 15

B) ${x}^{2}-{y}^{2}=45$

(x+y) (x - y) = 45

C) x - y = 3

From any 2 of the given 3 statements, we can find that 2 digit number as

2x = 18 => x = 9

=> y = 6

Hence, 2 digit number is 96.

Any one pair of A and B, B and C or C and A is sufficient to find.

A) -ve | B) +ve |

C) 0 | D) Can't be determined |

Explanation:

We know the Mathematical rules that

$\frac{\mathbf{+}}{\mathbf{+}}\mathbf{}\mathbf{=}\mathbf{}\mathbf{+}\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\frac{\mathbf{+}}{\mathbf{-}}\mathbf{}\mathbf{=}\mathbf{}\mathbf{-}\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\frac{\mathbf{-}}{\mathbf{+}}\mathbf{}\mathbf{=}\mathbf{}\mathbf{-}\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\frac{\mathbf{-}}{\mathbf{-}}\mathbf{}\mathbf{=}\mathbf{}\mathbf{+}$

A) TRUE | B) FALSE |

Explanation:

We know that,

**Alternate Exterior Angles Theorem::**

The Alternate Exterior Angles Theorem states that, when two parallel lines are cut by a transversal, the resulting alternate exterior angles are congruent .

**Converse of the Alternate Exterior Angles Theorem ::**

Converse of the Alternate Exterior Angles Theorem states that, If two lines are cut by a transversal and the alternate exterior angles are congruent, then the lines are parallel.

A) 4 | B) 3 |

C) 2 | D) 1 |