A) Rs.2543 | B) Rs.2534 |

C) Rs.2546 | D) Rs.2750 |

Explanation:

Shawn received an extra amount of (Rs.605 – Rs.550) Rs.55 on his compound interest paying bond as the interest that he received in the first year also earned interest in the second year.

The extra interest earned on the compound interest bond = Rs.55

The interest for the first year =550/2 = Rs.275

Therefore, the rate of interest =$\frac{55}{275}*100$= 20% p.a.

20% interest means that Shawn received 20% of the amount he invested in the bonds as interest.

If 20% of his investment in one of the bonds = Rs.275, then his total investment in each of the bonds =$\frac{275}{20}*100$ = 1375.

As he invested equal sums in both the bonds, his total savings before investing = 2 x 1375 =Rs.2750.

A) Rs. 7000 | B) Rs. 4500 |

C) Rs. 9000 | D) Rs. 8200 |

Explanation:

Let Rs. K invested in each scheme

Two years C.I on 20% = 20 + 20 + 20x20/100 = 44%

Two years C.I on 15% = 15 + 15 + 15x15/100 = 32.25%

Now,

(P x 44/100) - (P x 32.25/100) = 528.75

=> 11.75 P = 52875

=> P = Rs. 4500

Hence, total invested money = P + P = 4500 + 4500 = **Rs. 9000.**

A) 3.5% | B) 4% |

C) 5% | D) 6.5% |

Explanation:

Let 'R%' be the rate of interest

From the given data,

$\frac{\mathbf{2520}}{\mathbf{2400}}\mathbf{}\mathbf{=}\mathbf{}\frac{{\displaystyle {\left(\mathbf{1}\mathbf{}\mathbf{+}\mathbf{}{\displaystyle \frac{\mathbf{R}}{\mathbf{100}}}\right)}^{\mathbf{4}}}}{{\displaystyle {\left(\mathbf{1}\mathbf{}\mathbf{+}\mathbf{}{\displaystyle \frac{\mathbf{R}}{\mathbf{100}}}\right)}^{\mathbf{3}}}}\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\Rightarrow \left(1+\frac{\mathrm{R}}{100}\right)=\frac{63}{60}\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\mathbf{\Rightarrow}\mathbf{R}\mathbf{}\mathbf{=}\mathbf{}\mathbf{5}$

Hence, the rate of interest **R = 5% per annum.**

A) Rs. 387 | B) Rs. 441 |

C) Rs. 469 | D) Rs. 503 |

Explanation:

Given principal amount = Rs. 8000

Time = 3yrs

Rate = 5%

C.I for 3 yrs = $8000\mathrm{x}\frac{105}{100}\mathrm{x}\frac{105}{100}\mathrm{x}\frac{105}{100}-8000\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\mathbf{=}\mathbf{}\mathbf{Rs}\mathbf{.}\mathbf{}\mathbf{1261}$

Now, C.I for 2 yrs = $8000\mathrm{x}\frac{105}{100}\mathrm{x}\frac{105}{100}\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\mathbf{=}\mathbf{}\mathbf{Rs}\mathbf{.}\mathbf{}\mathbf{820}\mathbf{}$

Hence, the required difference in C.I is **1261 - 820 = Rs. 441**

A) Rs. 704 | B) Rs. 854 |

C) Rs. 893 | D) Rs. 914 |

Explanation:

We know that,

$\mathbf{S}\mathbf{.}\mathbf{I}\mathbf{.}\mathbf{}\mathbf{=}\mathbf{}\frac{\mathbf{PTR}}{\mathbf{100}}\phantom{\rule{0ex}{0ex}}\mathbf{\Rightarrow}\mathbf{}\mathbf{P}\mathbf{}\mathbf{=}\mathbf{}\frac{\mathbf{S}\mathbf{.}\mathbf{I}\mathbf{}\mathbf{x}\mathbf{}\mathbf{100}}{\mathbf{T}\mathbf{}\mathbf{x}\mathbf{}\mathbf{R}}\phantom{\rule{0ex}{0ex}}\mathbf{And}\mathbf{}\mathbf{also}\mathbf{,}\phantom{\rule{0ex}{0ex}}\mathbf{C}\mathbf{.}\mathbf{I}\mathbf{}\mathbf{=}\mathbf{}\mathbf{P}\left[{\left(\mathbf{1}\mathbf{}\mathbf{+}\mathbf{}\frac{\mathbf{R}}{\mathbf{100}}\right)}^{\mathbf{n}}\mathbf{-}\mathbf{}\mathbf{1}\right]$

From given data, P = Rs. 8625

Now, C.I = $\mathbf{8625}\left[{\left(\mathbf{1}\mathbf{+}\frac{\mathbf{4}}{\mathbf{100}}\right)}^{\mathbf{2}}\mathbf{-}\mathbf{1}\right]\phantom{\rule{0ex}{0ex}}=8625\left[{\left(\frac{26}{25}\right)}^{2}-1\right]\phantom{\rule{0ex}{0ex}}=8625\left[\frac{676}{625}-1\right]\phantom{\rule{0ex}{0ex}}=8625\mathrm{x}\frac{51}{625}\phantom{\rule{0ex}{0ex}}\mathbf{C}\mathbf{.}\mathbf{I}\mathbf{}\mathbf{=}\mathbf{}\mathbf{Rs}\mathbf{.}\mathbf{}\mathbf{703}\mathbf{.}\mathbf{80}$

A) Rs. 3845 | B) Rs. 4826 |

C) Rs. 5142 | D) Rs. 4415 |

Explanation:

We know the formula for calculating

The compound interest $\mathbf{C}\mathbf{}\mathbf{=}\mathbf{}\mathbf{P}\left[{\left(\mathbf{1}\mathbf{}\mathbf{+}\mathbf{}\frac{\mathbf{r}}{\mathbf{100}}\right)}^{\mathbf{n}}\mathbf{}\mathbf{-}\mathbf{}\mathbf{1}\right]$ where P = amount, r = rate of interest, n = time

Here P = 5000, r1 = 10, r2 = 20

Then $\mathbf{C}\mathbf{}\mathbf{=}\mathbf{}\mathbf{6500}\left[{\left(\mathbf{1}\mathbf{}\mathbf{+}\mathbf{}\frac{\mathbf{10}}{\mathbf{100}}\right)}^{\mathbf{2}}\mathbf{}\mathbf{x}\mathbf{}{\left(\mathbf{1}\mathbf{}\mathbf{+}\mathbf{}\frac{\mathbf{20}}{\mathbf{100}}\right)}^{\mathbf{2}}\mathbf{}\mathbf{-}\mathbf{}\mathbf{1}\right]\phantom{\rule{0ex}{0ex}}=6500\mathrm{x}\frac{1856}{2500}\phantom{\rule{0ex}{0ex}}=\frac{65\mathrm{x}1856}{25}$

**C = Rs. 4826.**

A) Rs. 1.80 | B) Rs. 2.04 |

C) Rs. 3.18 | D) Rs. 4.15 |

Explanation:

Compound Interest for 1 ^{1}⁄_{2} years when interest is compounded yearly = Rs.(5304 - 5000)

Amount after 1^{1}⁄_{2} years when interest is compounded half-yearly

Compound Interest for 1 ^{1}⁄_{2} years when interest is compounded half-yearly = Rs.(5306.04 - 5000)

Difference in the compound interests = (5306.04 - 5000) - (5304 - 5000)= 5306.04 - 5304 = Rs. 2.04

A) Rs. 3680 | B) Rs. 2650 |

C) Rs. 1400 | D) Rs. 1170 |

Explanation:

We know thatThe Difference between Compound Interest and Simple Interest for n years at R rate of interest is given by $\mathbf{C}\mathbf{.}{\mathbf{I}}_{\mathbf{n}}\mathbf{}\mathbf{-}\mathbf{}\mathbf{S}\mathbf{.}{\mathbf{I}}_{\mathbf{n}}\mathbf{}\mathbf{=}\mathbf{}\mathbf{P}{\left[\frac{\mathbf{R}}{\mathbf{100}}\right]}^{\mathbf{n}}$

Here n = 2 years, R = 20%, C.I - S.I = 56

$\mathbf{56}\mathbf{}\mathbf{=}\mathbf{}\mathbf{P}{\left[\frac{\mathbf{20}}{\mathbf{100}}\right]}^{\mathbf{2}}\phantom{\rule{0ex}{0ex}}=\mathrm{P}=56\mathrm{x}{\left(5\right)}^{2}\phantom{\rule{0ex}{0ex}}=\mathrm{P}=56\mathrm{x}25\phantom{\rule{0ex}{0ex}}\mathbf{=}\mathbf{}\mathbf{}\mathbf{P}\mathbf{}\mathbf{=}\mathbf{}\mathbf{Rs}\mathbf{.}\mathbf{}\mathbf{1400}$

A) Rs. 664.21 | B) Rs. 548.68 |

C) Rs. 445.95 | D) Rs. 692.57 |

Explanation:

We know Compound Interest = C.I. = P1+r100t - 1

Here P = 2680, r = 8 and t = 2

C.I. = 26801 + 81002-1= 268027252-12= 26802725+12725-1= 2680 5225×225

= (2680 x 52 x 2)/625

= 445.95

**Compound Interest = Rs. 445.95**