A) 1 | B) 2 |

C) 3 | D) 4 |

Explanation:

All *Pigeons* are *Birds*. But,*Dogs* are entairly different.

A) 21 | B) 22 |

C) 23 | D) 24 |

Explanation:

Let us assume the two persons who can speak two languages speak Hindi and Tamil. The third person then speaks all the three languages.

Tamil – Number of persons who can speak is 6. Only Tamil 6 – 2 – 1 = 3

Hindi - Number of persons who can speak is 15. Only Hindi 15 – 2 – 1 12

Gujarati – Number of persons who can speak is 6. Only Gujarati 6 – 1 = 5

Thus the number of persons who can speak only one language is 3 + 12 + 5 = 20

Number of persons who can speak two languages = 2

Number of person who an speak all the languages = 1

Total number of persons = 23.

A) 123 | B) 231 |

C) 312 | D) 321 |

Explanation:

No. of people who read Hindu = 285

No. of people who read TOI = 127

No. of people who read IE = 212

Now,

No. of people who read Hindu and TOI both is = 20

No. of people who read TOI and IE both is = 35

No. of people who read Hindu and IE both is = 29

Let No. of people who read Hindu , TOI and IE all is = x ;

So, only Hindu is = 285-20-29-x = 236-x ;

Only TOI is = 127-20-35-x = 72-x ;

Only IE is = 212-35-29-x = 148-x ;

Now, 236-x + 72-x + 148-x + 20 + 29 + 35 + x + 50 = 500 590 -2x = 500

So, x = 45 this is the value who read all the 3 dailies.

So, No. of people who read only one paper is = 236-45 + 72-45 + 148-45 = 191 + 27 + 103 = 321.

A) 45 | B) 44 |

C) 46 | D) 24 |

Explanation:

Given U=120

5% of 120 = 6

Students who can play Chess alone or Carroms alone = 120 - (30+40+6)=44

A) 1 | B) 2 |

C) 3 | D) 4 |

A) 1 | B) 3 |

C) 4 | D) 5 |

Explanation:

*Truck *and *Ship *are entirely different. But some *Goods *are carried by some *Trucks *and some *Goods *are carried by some *Ships.*