40
Q:

# The speed of three cars in the ratio 3 : 4 : 5. The ratio between time taken by them to travel the same distance is

Q:

Out of 135 applicants for a post, 60 are graduates and 80 have experience. What is the ratio of minimum to maximum number

 A) 12:1 B) 5:1 C) 1:5 D) 1:12

Explanation:

Given total applicants = 135
Given experienced candidates = 80
1) For maximum number of graduates have experience
Total graduates to have experience = 60

2) For minimum number of graduates have experience
Remaining after taking other than graduates in experience= 80-75 = 5

6 194
Q:

If 12 men can reap 120 acres of land in 36 days, how many acres of land can 54 men reap in 54 days?

 A) 710 acres B) 760 acres C) 810 acres D) 860 acres

Explanation:

$\inline \fn_cm \begin{matrix} 12\; men & 120 \; acres & 36\; days\\ 54\; men & ? & 54\; days \end{matrix}$

As 12 men can reap 120 acres, 54 men will be able to reap more acres in 36 days, 120 acres of land was reaped, so in 54 days, more land will be reaped.

Thus, the numbers of acres that can be reaped by 54 men in 54 days = $\inline \fn_cm 120\times \frac{54}{12}\times \frac{54}{36}=810\; acres$

12 959
Q:

The incomes of two persons A and B are in the ratio 3 : 4. If each saves Rs.100 per month, the ratio of their expenditures is Rs. 1 : 2. Find their incomes.

 A) Rs. 100 and Rs.150 B) Rs. 150 and Rs.200 C) Rs.200 and Rs.250 D) Rs.250 and Rs.300

Explanation:

Let the incomes of A and B be 3P and 4P.

If each saves Rs. 100 per month, then their expenditures = Income - savings = (3P - 100) and (4P - 100).

The ratio of their expenditures is given as 1 : 2.

Therefor, (3P - 100) : (4P - 100) = 1 : 2

Solving, We get P = 50. Substitute this value of P in 3P and 4P.

Thus, their incomes are : Rs.150 and Rs.200

10 827
Q:

Divide Rs.6500 among A,B and C so that after spending 90% , 75% and 60% of their respective saving were in the ratio of 3: 5: 6

A's spending 90%              $\inline&space;\therefore$   saving = 10%

B's spending 75%              $\therefore$   saving = 25%

C's spending 60%              $\inline&space;\therefore$   saving = 40%

Let us suppose A, B and C saves Rs. 3.5 and 6 respectively.

$\inline&space;\therefore$ 10% of A's saving = Rs.3

100% of A's saving = $\inline&space;\frac{3}{10}\times&space;100$ = Rs. 30

25% of B's saving = Rs. 5

100% of B's saving = $\inline&space;\frac{5}{25}\times&space;100$ = Rs. 20

40% of C's saving = Rs.6

100% of C's saving = $\inline&space;\frac{6}{40}\times&space;100$ = Rs. 15

Divide Rs. 6500 in the ratio of 30 : 20 : 15 as

A's Share  =  $\inline&space;\frac{30}{65}\times&space;6500$ = Rs. 3000

B's Share   = $\inline&space;\frac{20}{65}\times&space;6500$ = Rs. 2000

C's Share  = $\inline&space;\frac{15}{65}\times&space;6500$ = Rs. 1500

1508
Q:

Rs. 5625 is to be divided among A, B and C so that A may receive 1/2 as much as B and C together receive and B receives 1/4 of what A and C together receive. The share of A is more than that of B by

A + B + C = 5625

$\inline&space;B=\frac{1}{4}(A+C)&space;\Rightarrow&space;A+C&space;=4B$

$\inline&space;\therefore$ 4B + B = 5625

B = 1125

Also A + C = 4B = 4 x 1125 = 4500

Also $\inline&space;A=\frac{1}{2}(B+C)\Rightarrow&space;B+C=&space;2A$

B = 2A - C

$\inline&space;\therefore$ 2A - C = 1125

Now solving A+C = 4500 and 2A-C = 1125

Then A = 1875 and C = 2625

$\inline&space;\therefore$ A-B = 1875 - 1125 = Rs. 750