3
Q:

K is 4 times as fast as L and working together, they can complete a work in 24 days. In how many days can L alone complete the work ?

A) 30 days B) 40 days
C) 120 days D) 80 days

Answer:   A) 30 days



Explanation:

Given K=4L 

-->K+L = 4L+L = 5L

 

These 5L people can complete the work in 24 days, which means L alone can do the work in (24 x 5)=120 days.

 

Hence, K alone can do the work in 120/4= 30 days.

Q:

A,B,C can complete a work in 15,20 and 30 respectively.They all work together for two days then A leave the work,B and C work some days and B leaves 2 days before completion of that work.how many days required to complete the whole work?

Answer

Given A,B,C can complete a work in 15,20 and 30 respectively.


The total work is given by the LCM of 15, 20, 30 i.e, 60.


A's 1 day work = 60/15 = 4 units


B's 1 day work = 60/20 = 3 units


C's 1 day work = 60/30 = 2 units


(A + B + C) worked for 2 days = (4 + 3 + 2) 2 = 18 units


 Let B + C worked for x days = (3 + 2) x = 5x units


C worked for 2 days = 2 x 2 = 4 units


Then, 18 + 5x + 4 = 60


22 + 5x = 60


5x = 38


x = 7.6


 


Therefore, total number of days taken to complete the work = 2 + 7.6 + 2 = 11.6 = 11 3/5 days.

Report Error

View answer Workspace Report Error Discuss

1 9
Q:

M, N and O can complete the work in 18, 36 and 54 days respectively. M started the work and worked for 8 days, then N and O joined him and they all worked together for some days. M left the job one day before completion of work. For how many days they all worked together?

A) 4 B) 5
C) 3 D) 6
 
Answer & Explanation Answer: B) 5

Explanation:

Let M, N and O worked together for x days.

From the given data,
M alone worked for 8 days
M,N,O worked for x days
N, O worked for 1 day

But given that
M alone can complete the work in 18 days
N alone can complete the work in 36 days
O alone can complete the work in 54 days

The total work can be the LCM of 18, 6, 54 = 108 units

M's 1 day work = 108/18 = 6 units
N's 1 day work = 108/36 = 3 units
O's 1 day work = 108/54 = 2 units

Now, the equation is
8 x 6 + 11x + 5 x 1 = 108
48 + 11x + 5 = 108
11x = 103 - 48
11x = 55
x = 5 days.

Hence, all M,N and O together worked for 5 days.

Report Error

View Answer Workspace Report Error Discuss

0 33
Q:

P, Q, and R can do a job in 12 days together.  If their efficiency of working be in the ratio 3 : 8 : 5, Find in what time Q can complete the same work alone?

A) 36 days B) 30 days
C) 24 days D) 22 days
 
Answer & Explanation Answer: A) 36 days

Explanation:

Given the ratio of efficiencies of P, Q & R are 3 : 8 : 5

Let the efficiencies of P, Q & R be 3x, 8x and 5x respectively

They can do work for 12 days.

=> Total work = 12 x 16x = 192x

 

Now, the required time taken by Q to complete the job alone = 162x8x = 24 days.

Report Error

View Answer Workspace Report Error Discuss

0 87
Q:

5 men and 3 boys can together cultivate a 23 acre field in 4 days and 3 men and 2 boys together can cultivate a 7 acre field in 2 days. How many boys will be needed together with 7 men, if they cultivate 45 acre of field in 6 days.

A) 6 B) 4
C) 2 D) 3
 
Answer & Explanation Answer: C) 2

Explanation:

Let work done by 1 man in i day be m

and Let work done by 1 boy in 1 day be b

From the given data,

4(5m + 3b) = 23

20m + 12b = 23....(1)

2(3m + 2b) = 7

6m + 4b = 7 ....(2)

By solving (1) & (2), we get

m = 1, b = 1/4

Let the number of required boys = n

6(7 1 + n x 1/4) = 45

=> n = 2.

Report Error

View Answer Workspace Report Error Discuss

3 200
Q:

The ratio of efficiencies of P, Q and R is 2 : 3 : 4. While P and R work on alternate days and Q work for all days. Now the work completed in total 10 days and the total amount they get is Rs. 1200. Find the amount of each person(respectively).

A) 200, 600, 400 B) 400, 600, 200
C) 600, 200, 400 D) 400, 200, 600
 
Answer & Explanation Answer: A) 200, 600, 400

Explanation:

Ratio of efficiencies of P, Q and R = 2 : 3 : 4

From the given data,

Number of working days of P, Q, R = 5 : 10 : 5

Hence, ratio of amount of p, Q, R = 2x5 : 3x10 : 4x5 = 10 : 30 : 20

Amounts of P, Q, R = 200, 600 and 400.

Report Error

View Answer Workspace Report Error Discuss

0 168
Q:

Two persons Shyam and Rahim can do a job in 32 days together. Rahim can do the same job in 48 days alone. They started working together and after working 8 days Rahim is replaced by a third person Ram whose efficiency is half that of Rahim. Find in how many days the remaining work will be completed by both Shyam and Ram together?

A) 16 days B) 72/5 days
C) 15 days D) 96/5 days
 
Answer & Explanation Answer: B) 72/5 days

Explanation:

Work done by Shyam and Rahim in 8 days = 8/32 = 1/4

Remaining work to be done by Shyam and Ram = 1 - 1/4 = 3/4

Given efficieny of Ram is half of Rahim i.e, as Rahim can do the work in 48 days, Ram can do the work in 24 days.

One day work of Ram and Shyam = (1/32 - 1/48) + 1/24 = 5/96

Hence, the total work can be done by Shyam and Ram together in 96/5 days.

 

Therefore, remaining work 3/4 can be done by them in 3/4 x 96/5 = 72/5 = 14.4 days.

Report Error

View Answer Workspace Report Error Discuss

2 269
Q:

6 men can complete a piece of work in 12 days. 8 women can complete the same piece of work in 18 days whereas 18 children can complete the piece of work in 10 days. 4 men, 12 women and 20 children work together for 2 days. If only men were to complete the remaining work in 1 day how many men would be required totally?

A) 38 B) 72
C) 36 D) 76
 
Answer & Explanation Answer: C) 36

Explanation:

Given 4men, 12 women and 20 children work for  2 days.

Workdone for 2 days by 4men, 12 women and 20 children = 4 x 26 x 12 + 12 x 28 x 18 + 20 x 218 x 10 = 12

Therefore, remaining work = 1 - 12 = 12

To complete the same work by only men in 1 day,

We know that M1 x D1 = M2 x D2

Here M1 = 6 , D1 = 12 and M2 = M , D2 = 1

12 x 6 = M x 1

=> M = 12 x 6 = 72

=> But the remaining work = 1/2

Men required => 1/2 x 72 = 36

Only men required to Complete the remaining work in 1 day = 36.

 

Report Error

View Answer Workspace Report Error Discuss

7 580
Q:

Three men, four women and six children can complete a work in 9 days. A women does  double the work a man does and a child does half the work a man does. How many women alone can complete this work in 9 days?

A) 7 B) 8
C) 9 D) 6
 
Answer & Explanation Answer: A) 7

Explanation:

Given (3 Men + 4 Women + 6 Children) -----> 9 days

But W = 2M and C = M/2

Now, convert Men and Children into Women by

3W2 + 4W + 6W4=> 32 + 4 + 32 = 7 Women 

Therefore, 7 women alone can complete this work in 9 days.

Report Error

View Answer Workspace Report Error Discuss

6 462