A) 24 days | B) 25 days |

C) 20 days | D) 19 days |

Explanation:

Let Q complete that work in 'L' days

=> $\frac{1}{L}+\frac{1}{L-5}=\frac{9}{100}$

=> $9{L}^{2}-245L+500=0$

L = 25 days.

A) 111 | B) 117 |

C) 123 | D) 139 |

Explanation:

We know that,

$\frac{\mathbf{M}\mathbf{1}\mathbf{}\mathbf{\times}\mathbf{}\mathbf{D}\mathbf{1}}{\mathbf{W}\mathbf{1}}\mathbf{}\mathbf{=}\mathbf{}\frac{\mathbf{M}\mathbf{2}\mathbf{}\mathbf{\times}\mathbf{}\mathbf{D}\mathbf{2}}{\mathbf{W}\mathbf{2}}$

Here M1 = 1, D1 = 6 min, W1 = 1 and M2 = M, D2 = 90 min, W2 = 1845

$\frac{\mathbf{1}\mathbf{}\mathbf{\times}\mathbf{}\mathbf{6}}{\mathbf{1}}\mathbf{}\mathbf{=}\mathbf{}\frac{\mathbf{M}\mathbf{}\mathbf{\times}\mathbf{}\mathbf{90}}{\mathbf{1845}}$

=> **M = 123**

A) 4 days | B) 6 days |

C) 7 days | D) 5 days |

Explanation:

Given that

6 men and 8 boys can do a piece of work in 10 days

26 men and 48 boys can do the same in 2 days

As the work done is equal,

10(6M + 8B) = 2(26M + 48B)

60M + 80B = 52M + 96B

=> M = 2B

=> B = M/2 ……(1)

Now Put (1) in 15M + 20B

=> 15M + 10M = 25M

Now, 6M + 8B in 10 days

=> (6M + 4M) 10 = 100M

Then D(25M) = 100M

=> **D = 4 days.**

A) 36 | B) 32 |

C) 22 | D) 28 |

Explanation:

Let the total women in the group be **'W'**

Then according to the given data,

**W x 20 = (W-12) x 32**

=>** W = 32**

*Therefore, the total number of women in the group =*** 32**

A) 16 days | B) 13 days |

C) 15 days | D) 12 days |

Explanation:

Ratio of times taken by P & Q = 100 : 130 = 10:13

Let Q takes x days to do the work

Then, 10:13 :: 23:x

=> x = 23x13/10

=> x = 299/10

P's 1 day's work = 1/23

Q's 1 day's work = 10/299

(P+Q)'s 1 day's work = (1/23 + 10/299) = 23/299 = 1/13

Hence, P & Q together can complete the work in **13** days.

A) 3 days | B) 6 days |

C) 4 days | D) 2 days |

Explanation:

From the given data,

=> (2 M + 3W) 8 = (3M + 2W)7

=> 16M + 24W = 21M + 14 W

=> 10W = 5M

=> 2W = M

=> 14W × **?** = 7W × 8

**?** = **4 days**

A) 16 | B) 18 |

C) 19 | D) 21 |

Explanation:

clearly total persons are increased in => 28/35 :: 52/65 = 4:5

As time is inversely proportional to men, so total **time** will decrease in the ratio 5:4

Hence, 22.5 x 4/5 = 18 days.

A) 1/3 | B) 2/3 |

C) 1/6 | D) 5/6 |

Explanation:

Given X can do in 10 days

=> 1 day work of X = 1/10

Y can do in 15 days

=> 1 day work of Y = 1/15

1day work of (X + Y) = 1/10 + 1/15 = 1/6

Given they are hired for 5 days

=> 5 days work of (X + Y) = 5 x 1/6 = 5/6

Therefore, **Unfinished work = 1 - 5/6 = 1/6 **

A) 3 days | B) 4 days |

C) 5 days | D) 6 days |

Explanation:

Given 10 men take 15 days to complete a work

=> Total mandays = 15 x 10 = 150

Let the work be 150 mandays.

=> Now 37 men can do 150 mandays in 150/37 =~ 4 days