A) 1200 | B) 3000 |

C) 3600 | D) 1300 |

Explanation:

Let the sum be Rs. x. Then,

$\left[\frac{x}{2}+\frac{{\displaystyle \frac{x}{2}\times 100}}{100+\left({\displaystyle \frac{25}{2}}\times 2\right)}\right]-\frac{x\times 100}{100+\left(\frac{25}{2}\times 1\right)}=40$

(x/2)+(2x/5)-(8x/9) = 40

x=3600.

Therfore, amount of bill=Rs. 3600.

A) Rs.948 | B) Rs.876 |

C) Rs.768 | D) Rs.658 |

Explanation:

P.W. = $\frac{100\times T.D}{R\times T}$ = $\frac{100\times 168}{14\times 2}$ = 600.

Sum = (P.W. + T.D.) = Rs. (600 + 168) = Rs. 768.

A) Rs.600 | B) Rs.601 |

C) Rs.602 | D) Rs.603 |

Explanation:

PW = $\frac{Amount}{{\left(1+{\displaystyle \frac{R}{100}}\right)}^{T}}$

A) rs.1175 | B) rs.1375 |

C) rs.1475 | D) rs.1575 |

Explanation:

PW = $\frac{100\times Amount}{100+\left(R\times T\right)}$

A) 10years | B) 20years |

C) 30years | D) 40years |

Explanation:

PW = $\frac{100\times Amount}{100+\left(R\times T\right)}$

A) (i) | B) (ii) |

C) both (i) and (ii) | D) none |

Explanation:

PW = $\frac{100\times Amount}{100+\left(R\times T\right)}$

A) 6months | B) 5months |

C) 8months | D) 3months |

Explanation:

P.W= Amount – (T.D)

Time = $\frac{100\times TD}{PW\times R}$

A) (6 + 2/3)% | B) (5+ 2/3)% |

C) (2+ 2/3)% | D) (4+ 2/3)% |

A) 27months | B) 23months |

C) 20months | D) 12months |

Explanation:

P.W. = Rs. (1600 - 160) = Rs. 1440

∴ S.I. on Rs.1440 at 5% is Rs. 160.

∴ Time = [100 * 160 / 1440 * 5] = 20/9 years = [20/9 * 12] months = 27 months.