A) 6 | B) 9 |

C) 24 | D) 30 |

Explanation:

Volume of block=(6x9x12) = 648

Side of largest cube = H.C.F of 6,9,12 = 3cm

Volume of the cube=(3x3x3)=27

Number of cubes=(648/27)=24

A) 1:3 | B) 2:1 |

C) 3:4 | D) 4:7 |

A) 2413 sq.m | B) 1234 sq.m |

C) 4312 sq.m | D) 2143 sq.m |

Explanation:

Let the radii of the smaller and the larger circles be 's' m and 'l' m respectively.

2∏s = 264 and 2∏l = 352

s = 264/2∏ and l = 352/2∏

Difference between the areas = ∏ - ∏

= ∏{1762/∏∏ - 1322/∏∏}

= 1762/∏ - 1322/∏

= (176 - 132)(176 + 132)/∏

= (44)(308)/(22/7) = (2)(308)(7) = 4312 sq m

A) 100 π | B) 101/π |

C) 99 π/12 | D) 54/13π |

Explanation:

4/3 π x 10 x 10 x 10 = 8 x 4/3 π rxrxr

r = 5

4π x 5 x 5 = 100π

A) 6000 | B) 5400 |

C) 3800 | D) 4700 |

Explanation:

Let 'B' be the nuber of bricks.

=> 10 x 4/100 x 5 x 90/100 = 25/100 x 15/100 x 8/100 x B

=> 10 x 20 x 90 = 15 x 2 x B

=> B = 6000

A) 64 | B) 56 |

C) 48 | D) 40 |

Explanation:

Volume of cuboid = (24 x 9 x 8) cm = 1728 cu.cm

Volume of small cube = (3 x 3 x 3) cm = 27 cu.cm

So,

No. of small cubes formed = 1728/27 = 64.