Searching for "If"

Q:

Eight first class and six second class petty officers are on the board of the 56 club. In how many ways can the members elect, from the board, a president, a vice-president, a secretary, and a treasurer if the president and secretary must be first class petty officers and the vice-president and treasurer must be second class petty officers?

A) 1500 B) 1860
C) 1680 D) 1640
 
Answer & Explanation Answer: C) 1680

Explanation:

Since two of the eight first class petty officers are to fill two different offices, we write 8P2=56

 

Then, two of the six second class petty officers are to fill two different offices; thus, we write 6P2 =30

 

The principle of choice holds in this case; therefore, the members have 56 x 30 = 1680 ways to select the required office holders

Report Error

View Answer Report Error Discuss

Q:

How many ways can 10 letters be posted in 5 post boxes, if each of the post boxes can take more than 10 letters ?

A) 5^10 B) 10^5
C) 5P5 D) 5C5
 
Answer & Explanation Answer: A) 5^10

Explanation:

Each of the 10 letters can be posted in any of the 5 boxes.

 

So, the first letter has 5 options, so does the second letter and so on and so forth for all of the 10 letters.

 

i.e. 5*5*5*….*5 (upto 10 times) = 5 ^ 10.

Report Error

View Answer Report Error Discuss

Q:

What are different types of DBMS?

Answer

1. DBMS


2. RDBMS (Relational)


3. ORDBMS (Object Relational)


4. DDBMS (Distributed)


5. FDBMS (Federated)


6. HDDBMS (Homogeneous)


7. HDBMS (Hierarchical)


8. NDBMS (Networked)

Report Error

View answer Workspace Report Error Discuss

Subject: Database
Job Role: Database Administration

Q:

How many different four letter words can be formed (the words need not be meaningful using the letters of the word "MEDITERRANEAN" such that the first letter is E and the last letter is R?

A) 59 B) 56
C) 64 D) 55
 
Answer & Explanation Answer: A) 59

Explanation:

The first letter is E and the last one is R.

 

Therefore, one has to find two more letters from the remaining 11 letters.

 

Of the 11 letters, there are 2 Ns, 2Es and 2As and one each of the remaining 5 letters.

 

The second and third positions can either have two different letters or have both the letters to be the same.

 

Case 1: When the two letters are different. One has to choose two different letters from the 8 available different choices. This can be done in 8 * 7 = 56 ways.

 

Case 2: When the two letters are same. There are 3 options - the three can be either Ns or Es or As. Therefore, 3 ways.

 

Total number of possibilities = 56 + 3 = 59

Report Error

View Answer Report Error Discuss

Q:

If repetition of the digits is allowed, then the number of even natural numbers having three digits is :

A) 550 B) 450
C) 500 D) 540
 
Answer & Explanation Answer: B) 450

Explanation:

In a 3 digit number one’s place can be filled in 5 different ways with (0,2,4,6,8)

10’s place can be filled in 10 different ways

100’s place can be filled in 9 different ways

There fore total number of ways = 5X10X9 = 450

Report Error

View Answer Report Error Discuss

Q:

If the letters of the word SACHIN are arranged in all possible ways and these words are written out as in dictionary, then the word ‘SACHIN’ appears at serial number :

A) 601 B) 600
C) 603 D) 602
 
Answer & Explanation Answer: A) 601

Explanation:

If the word started with the letter A then the remaining 5 positions can be filled in  5! Ways.

 

If it started with c then the remaining 5 positions can be filled in 5! Ways.Similarly if it started with H,I,N the remaining 5 positions can be filled in 5! Ways.

 

If it started with S then the remaining position can be filled with A,C,H,I,N in alphabetical order as on dictionary.

 

The required word SACHIN can be obtained after the 5X5!=600 Ways i.e. SACHIN is the 601th letter.

Report Error

View Answer Report Error Discuss

Q:

How many alphabets need to be there in a language if one were to make 1 million distinct 3 digit initials using the alphabets of the language?

A) 1000 B) 100
C) 500 D) 999
 
Answer & Explanation Answer: B) 100

Explanation:

1 million distinct 3 digit initials are needed.

 

Let the number of required alphabets in the language be ‘n’.

 

Therefore, using ‘n’ alphabets we can form n * n * n = n3 distinct 3 digit initials.

 

Note distinct initials is different from initials where the digits are different.

 

For instance, AAA and BBB are acceptable combinations in the case of distinct initials while they are not permitted when the digits of the initials need to be different.

 

This n3 different initials = 1 million 

i.e. n3=106  (1 million = 106)

  => n = 102 = 100

 

Hence, the language needs to have a minimum of 100 alphabets to achieve the objective.

Report Error

View Answer Report Error Discuss

Q:

If nC10=nC12  then,find n.

A) 10 B) 12
C) 22 D) 24
 
Answer & Explanation Answer: C) 22

Explanation:

Using, Crn=Cn-rn we get 

n – 10 = 12

or, n = 12 + 10 = 22

Report Error

View Answer Report Error Discuss