# Aptitude and Reasoning Questions

A) 5, 3, 4, 1, 2 | B) 3, 5, 4, 2, 1 |

C) 3, 5, 1, 4, 2 | D) 5, 3, 1, 2, 4 |

Explanation:

The correct order is :

Arrival Introduction Presentation Discussion Recommendation

3 5 1 4 2

A) Friday | B) Saturday |

C) Sunday | D) Thursday |

Explanation:

**15 Aug, 1947** = (1946 years + Period from 1.1.1947 to 15.8.1947)

**Odd days** in 1600 years = 0

**Odd days** in 300 years = 1

**46 years** = (35 ordinary years + 11 leap years) = (35 x 1 + 11 x 2)= 57 (8 weeks + 1 day) = **1 odd day **

**Jan. Feb. Mar. Apr. May. Jun. Jul. Aug **

( **31 + 28 + 31 + 30 + 31 + 30 + 31 + 15** ) = 227 days = (32 weeks + 3 days) = **3 odd days.**

**Total number of odd days = (0 + 1 + 1 + 3) = 5 odd days. **

Hence, as the number of **odd days = 5 , given day is Friday.**

A) Tuesday | B) Monday |

C) Sunday | D) Saturday |

Explanation:

Each day of the week is repeated after 7 days. So, after 63 days, it will be Monday.

After 61 days, it will be Saturday.

A) 2500 | B) 2700 |

C) 2900 | D) 3100 |

Explanation:

Total number of votes = 7500

Given that 20% of Percentage votes were invalid

=> Valid votes = 80%

Total valid votes = 7500*(80/100)

1st candidate got 55% of the total valid votes.

Hence the 2nd candidate should have got 45% of the total valid votes

=> Valid votes that 2nd candidate got = total valid votes x (45/100)

7500*(80/100)*(45/100) = 2700

A) 360, 160, 200 | B) 160, 360, 200 |

C) 200, 360,160 | D) 200,160,300 |

Explanation:

let ratio be x.

Hence no. of coins be 5x ,9x , 4x respectively

Now given total amount = Rs.206

=> (.50)(5x) + (.25)(9x) + (.10)(4x) = 206

we get x = 40

=> No. of 50p coins = 200

=> No. of 25p coins = 360

=> No. of 10p coins = 160

A) 500 | B) 1000 |

C) 1500 | D) 2000 |

Explanation:

Let the total profit be Rs. 100.

After paying to charity, A's share = (95*3/5) = Rs. 57.

If A's share is Rs. 57, total profit = Rs. 100.

If A's share is Rs. 855, total profit = (100/57*855) = 1500.

A) 1/4 | B) 1/2 |

C) 3/4 | D) 7/12 |

Explanation:

Let A, B, C be the respective events of solving the problem and $\overline{)A},\overline{)B},\overline{)C}$ be the respective events of not solving the problem. Then A, B, C are independent event

$\therefore \overline{)A},\overline{)B},\overline{)C}$ are independent events

Now, P(A) = 1/2 , P(B) = 1/3 and P(C)=1/4

$P\left(\overline{)A}\right)=\frac{1}{2},P\left(\overline{)B}\right)=\frac{2}{3},P\left(\overline{)C}\right)=\frac{3}{4}$

$\therefore $ P( none solves the problem) = P(not A) and (not B) and (not C)

= $P\left(\overline{)A}\cap \overline{)B}\cap \overline{)C}\right)$

= $P\left(\overline{)A}\right)P\left(\overline{)B}\right)P\left(\overline{)C}\right)$ $\left[\because \overline{)A},\overline{)B},\overline{)C}areIndependent\right]$

= $\frac{1}{2}\times \frac{2}{3}\times \frac{3}{4}$

= $\frac{1}{4}$

Hence, P(the problem will be solved) = 1 - P(none solves the problem)

= $1-\frac{1}{4}$= **3/4**

A) 2:5 | B) 3:5 |

C) 4:5 | D) 5:4 |

Explanation:

Let the third number be x.

Then, first number = 120% of x =120x/100 = 6x/5

Second number =150% of x = 150x/100 = 3x/2

Ratio of first two numbers = 6x/5 : 3x/2 = 12x : 15x = 4 : 5