# Quantitative Aptitude - Data Interpretation Questions

**1. ANSWER : C**

** Explanation - ** Number of students who passed half-yearly exams in the school

= (Number of students passed in half-yearly but failed in annual exams) + (Number of students passed in both exams)

= (6 + 17 + 9 + 15) + (64 + 55 + 46 + 76)

= 288.

Also, Number of students who passed annual exams in the school

= (Number of students failed in half-yearly but passed in annual exams) + (Number of students passed in both exams)

= (14 + 12 + 8 + 13) + (64 + 55 + 46 + 76)

= 288.

Since, the number of students passed in half-yearly = the number of students passed in annual exams. Therefore, it can be inferred that both the examinations had almost the same difficulty level.

Thus Statements (a), (b) and (d) are false and Statement (c) is true.

**2. ANSWER : D**

**Explanation - **Since the classification of the students on the basis of their results and sections form independent groups, so the total number of students in the class:

= (28 + 23 + 17 + 27 + 14 + 12 + 8 + 13 + 6 + 17 + 9 + 15 + 64 + 55 + 46 + 76)

= 430.

**3. ANSWER : D**

**Explanation****- **Pass percentages in at least one of the two examinations for different sections are:

For Section A = $\frac{14+6+64}{28+14+6+64}\times 100=\frac{84}{112}\times 100$% = 75%

For Section B =$\frac{12+17+55}{23+12+17+55}\times 100$ % = 78.5%

For Section C = $\frac{8+9+46}{17+8+9+46}\times 100$%= 78.75%

For Section D = $\frac{13+15+76}{27+13+15+76}\times 100$%= 79.39%

Clearly ,the pass percentage is maximum for Section D

**4. ANSWER : A**

**Explanation - **Total number of students passed in annual exams in a section

= [ (No. of students failed in half-yearly but passed in annual exams) + (No. of students passed in both exams) ] in that section

Success rate in annual exams in Section A= $\frac{14+64}{112}\times 100$% = 69.64%

Similarly, success rate in annual exams in:

Section B = $\frac{12+55}{107}\times 100$% = 62.62%

Section C = $\frac{8+46}{80}\times 100$% = 67.5%

Section D = $\frac{89}{131}\times 100$% = 67.94%

Clearly, the success rate in annual examination is maximum for Section A.

**5. ANSWER : D**

**Explanation - **Total number of failures in half-yearly exams in a section

= [ (Number of students failed in both exams) + (Number of students failed in half-yearly but passed in Annual exams) ] in that section

Failure rate in half-yearly exams in Section A %= 37.5 %

Similarly, failure rate in half-yearly exams in:

Section B = 32.71%

Section C = 31.25%

Section D = 30.53%

Clearly, the failure rate is minimum for Section D.

= (Number of students passed in half-yearly but failed in annual exams) + (Number of students passed in both exams)

= (6 + 17 + 9 + 15) + (64 + 55 + 46 + 76)

= 288.

Also, Number of students who passed annual exams in the school

= (Number of students failed in half-yearly but passed in annual exams) + (Number of students passed in both exams)

= (14 + 12 + 8 + 13) + (64 + 55 + 46 + 76)

= 288.

Since, the number of students passed in half-yearly = the number of students passed in annual exams. Therefore, it can be inferred that both the examinations had almost the same difficulty level.

Thus Statements (a), (b) and (d) are false and Statement (c) is true.

**1. Answer : 2**

**Explanation : **Productivity = Total production/area of Agr.land

Productivity of UP = [ (35000+30000+25000) / (30/100) ] = 300000

Productivity of MP = [ (30000+37500+27500) / (25/100) ] = 380000

Productivity of Bihar = [ (22500+27500+25000) / (20/100) ] = 375000

Productivity of Odisha = [ (22500+15000+10000) / (5/100) ]= 950000

Productivity of Haryana = [ (30000+25000+35000) / (8/100) ] = 1125000

Productivity of Punjab = [ (40000+35000+30000) / (12/100) ] = 875000

The Productivity of Haryana is the maximum.

**2. Answer : 5**

**Explanation : **Production of Punjab is maximum = 105000 tonnes

**3. Answer : 3**

**Explanation : **Production of Wheat in Punjab = 40000 tones

Production of Maize in Odisha = 10000 tones

Required % = (40000 - 10000)/100 = 300%

**4. Answer : 4**

**Explanation : **The ratio of prodution of Rice in Bihar to the production of Wheat in Haryana = 25000 tonnes : 25000 tonnes = 1 : 1

**5. Answer : 1**

**Explanation : **Income of MP from export of 40% of Rice at the rate of Rs.30 per kg = Rs.39crore

Income of UP from export of 30% of Rice at the rate of Rs.32 per kg = Rs.28.8 crore

Required ratio = 39 : 28.8 = 390 : 288 = 65 : 48

**1. ANSWER : D**

**Explanation - **

Average amount of interest paid by the company during the given period

=$Rs.\frac{23.4+32.5+41.6+36.4+49.4}{5}lakhs=Rs.\frac{183.3}{5}lakhs$

= Rs. 36.66 lakhs** **

**2. ANSWER : C**

**Explanation - **

Required Percentage = $\frac{3.00+2.52+3.84+3.68+3.96}{288+342+324+336+420}\times 100$ %

= $\frac{17}{1710}\times 100$% $\approx $1%

**3. ANSWER: C**

**Explanation - **** **

Required Percentage = $\frac{288+98+3.00+23.4+83}{420+142+3.96+49.4+98}\times 100$

= $\frac{495.4}{713.36}\times 100$ $\approx $ 69.45%

**4. ANSWER: A**

**Explanation - **Total expenditure of the Company during 2000 = (324 + 101 + 3.84 + 41.6 + 74) lakhs = 544.44 lakhs

**5. ANSWER : B**

**Explanation - **

Required ratio = $\frac{83+108+74+88+98}{98+112+101+133+142}$

= $\frac{451}{586}$

= ** $\frac{1}{1.3}=\frac{10}{13}$ **

**1. ANSWER : C**

**Explanation - **Required percentage=$\frac{9\%of5700}{8\%of8550}\times 100$ % = $\frac{9\times 5700}{8\times 8550}\times 100$ % = 75%

**2. ANSWER : B**

**Explanation - **The percentage of candidates passed to candidates enrolled can be determined for each institute as under:

P = $\frac{18\%of5700}{22\%of8550}\times 100$ % = 54.55%

Q = $\frac{17\%of5700}{15\%of8550}\times 100$ % = 75.56%

R = $\frac{13\%of5700}{10\%of8550}\times 100$ % = 86.67%

S =$\frac{16\%of5700}{17\%of8550}\times 100$ % = 62.75%

T = $\frac{9\%of5700}{8\%of8550}\times 100$% = 75%

V= $\frac{15\%of5700}{12\%of8550}\times 100$% = 83.33%

X= $\frac{12\%of5700}{16\%of8550}\times 100$% = 50%

Highest of these is 86.67% corresponding to institute R.

**3. ANSWER : C**

**Explanation - **Required difference = [(16% + 18%) of 5700] - [(8% + 10%) of 8550]

= [(34% of 5700) - (18% of 8550)]

= (1938 - 1539)

= 399

**4. ANSWER : B**

**Explanation - **Candidates passed from institutes Q and R together = [(13% + 17%) of 5700] = 30% of 57000.

Candidates enrolled from institutes Q and R together = [(15% + 10%) of 8550] = 25% of 8550.

Required Percentage = $\frac{30\%of5700}{25\%of8550}\times 100$ % = 80%

**5. ANSWER : C**

**Explanation - **Required ratio = $\frac{18\%of5700}{22\%of8550}$ = 6/11

**1. ANSWER : D**

**Explanation - **Required difference

= (272 + 240 + 236 + 256 + 288) - (200 + 224 + 248 + 272 + 260)

= 88.

**2. ANSWER : B**

**Explanation - **Total number of Peons working in the Company in 1999

= (820 + 184 + 152 + 196 + 224) - (96 + 88 + 80 + 120)

= 1192.

**3. ANSWER : A**

**Explanation -** Number of Managers working in the Company:

In 1995 = 760.

In 2000 = (760 + 280 + 179 + 148 + 160 + 193) - (120 + 92 + 88 + 72 + 96)= 1252.

Therefore, Percentage increase in the number of Managers

=$\frac{\left(1252-760\right)}{760}\times 100$ %= 64.74%

Number of Technicians working in the Company:

In 1995 = 1200.

In 2000 = (1200 + 272 + 240 + 236 + 256 + 288) - (120 + 128 + 96 + 100 +112) = 1936.

Therefore, Percentage increase in the number of Technicians

= $\frac{\left(1936-1200\right)}{1200}\times 100$ % = 61.33%

Number of Operators working in the Company:

In 1995 = 880.

In 2000 = (880 + 256 + 240 + 208 + 192 + 248) - (104 + 120 + 100 + 112 + 144) = 1444.

Therefore, Percentage increase in the number of Operators

=$\frac{\left(1444-880\right)}{880}\times 100$ % = 64.09%

Number of Accountants working in the Company:

In 1995 = 1160.

In 2000 = (1160 + 200 + 224 + 248 + 272 + 260) - (100 + 104 + 96 + 88 + 92) = 1884.

Therefore, Percentage increase in the number of Accountants

=$\frac{\left(1884-1160\right)}{1160}\times 100$ % = 62.14%

Number of Peons working in the Company:

In 1995 = 820.

In 2000 = (820 + 184 + 152 + 196 + 224 + 200) - (96 + 88 + 80 + 120 + 104) = 1288.

Therefore, Percentage increase in the number of Peons

=$\frac{\left(1288-820\right)}{820}\times 100$ % = 57.07%

Clearly, the percentage increase is maximum in case of Managers.

**4. ANSWER : B**

**Explanation - ** Total number of employees of various categories working in the Company in 1997 are:

Managers = (760 + 280 + 179) - (120 + 92) = 1007.

Technicians = (1200 + 272 + 240) - (120 + 128) = 1464.

Operators = (880 + 256 + 240) - (104 + 120) = 1152.

Accountants = (1160 + 200 + 224) - (100 + 104) = 1380.

Peons = (820 + 184 + 152) - (96 + 88) = 972.

Therefore, Pooled average of all the five categories of employees working in the Company in 1997 = 1/5 x (1007 + 1464 + 1152 + 1380 + 972)

= 1/5 x (5975)

= 1195.

**5. ANSWER : D**

**Explanation - ** Total number of Operators who left the Company during 1995 - 2000

= (104 + 120 + 100 + 112 + 144)

= 580.

Total number of Operators who joined the Company during 1995 - 2000

= (880 + 256 + 240 + 208 + 192 + 248

= 2024.

Therefore, Required Percentage

= (580/2024)x100% = 28.66% ~= 29%.

**1. ANSWER : D**

**Explanation - **The ratio of imports to exports for the years 1998 and 1999 are 1.25 and 1.40 respectively.

Let the exports in the year 1999 = Rs. *x* crores.

Then, the exports in the year 1998 = Rs. (500 - *x*) crores.

$\frac{250}{500-\mathrm{x}}=1.25=\mathrm{x}=300\mathrm{crores}$ [ Using ratio for 1998 ]

Thus, the exports in the year 1999 = Rs. 300 crores.

Let the imports in the year 1999 = Rs. *y* crores.

Then, Imports in the year 1999 = $\frac{\mathrm{y}}{300}=1.4=\mathrm{y}=420$= Rs. 420 crores.

**2. ANSWER : C**

**Explanation - **The imports are minimum proportionate to the exports implies that the ratio of the value of imports to exports has the minimum value.

Now, this ratio has a minimum value 0.35 in 1997, i.e., the imports are minimum proportionate to the exports in 1997.

**3. ANSWER : D**

**Explanation - **The graph gives only the ratio of imports to exports for different years. To find the percentage increase in imports from 1997 to 1998, we require more details such as the value of imports or exports during these years.

Hence, the data is inadequate to answer this question.

**4. ANSWER : B**

**Explanation - **** **Ratio of imports to exports in the year 1996 = 0.85.

Let the exports in 1996 = Rs. *x* crores.

Then , $\frac{272}{\mathrm{x}}=0.85=\mathrm{x}=320$

Exports in 1996 = Rs. 320 crores.

**5. ANSWER : D**

**Explanation - **The exports are more than the imports imply that the ratio of value of imports to exports is less than 1.Now, this ratio is less than 1 in years 1995, 1996, 1997 and 2000.

Thus, there are four such years.

**1. ANSWER : C**

**Explanation - **34 x 3.6 = 122.4 (since 1% = 3.6 degrees)

**2. ANSWER : B**

**Explanation - **(67/11) x 4000 = 24 363.6364

**3. ANSWER : C**

**Explanation - **(33 + 11) = 44

**4. ANSWER : A**

**Explanation - **Investment other than NRI and corporate houses is 33% = 335000. Also, investment by offshore funds and NRI's is equal to 27%.

Hence, (27 x 335000)/33 = 274 090.909

**5. ANSWER : B**

**Explanation - **FII's currently account for 33 out of 100.

If their value is doubled and all other investments are kept constant then their new value would be 66 out of 133 = approximately equal to 50%

**1. Answer : 4**

**Explanation :** The water level of River-C in September = 184 and water level of River-B in June = 202

Required ratio = 184 : 202 => 92 : 101

**2. Answer : 2**

**3. Answer : 3**

**Explanation :** Average water level of River-A in all months =$\frac{196+205+230+212}{4}$= 210.75 m

**4. Answer : 4**

**5. Answer : 3**

**Explanation :** Water level of River-A in July after decreasing =$205\times \frac{80}{100}$ = 41 x 4 = 164m