Searching for "5%"

Q:

Eight first class and six second class petty officers are on the board of the 56 club. In how many ways can the members elect, from the board, a president, a vice-president, a secretary, and a treasurer if the president and secretary must be first class petty officers and the vice-president and treasurer must be second class petty officers?

A) 1500 B) 1860
C) 1680 D) 1640
 
Answer & Explanation Answer: C) 1680

Explanation:

Since two of the eight first class petty officers are to fill two different offices, we write 8P2=56

 

Then, two of the six second class petty officers are to fill two different offices; thus, we write 6P2 =30

 

The principle of choice holds in this case; therefore, the members have 56 x 30 = 1680 ways to select the required office holders

Report Error

View Answer Report Error Discuss

Q:

A team of 8 students goes on an excursion, in two cars, of which one can seat 5 and the other only 4. In how many ways can they travel?

A) 126 B) 240
C) 120 D) 260
 
Answer & Explanation Answer: A) 126

Explanation:

There are 8 students and the maximum capacity of the cars together is 9.

 

We may divide the 8 students as follows

 

Case I: 5 students in the first car and 3 in the second Or

 

Case II: 4 students in the first car and 4 in the second

 

Hence,     in Case I: 8 students are divided into groups of 5 and 3 in 8C3 ways.

 

Similarly, in Case II: 8 students are divided into two groups of 4 and 4 in 8C4 ways.

 

Therefore, the total number of ways in which 8 students can travel is

 

8C3+8C4 = 56 + 70 = 126.

Report Error

View Answer Report Error Discuss

Q:

How many ways can 10 letters be posted in 5 post boxes, if each of the post boxes can take more than 10 letters ?

A) 5^10 B) 10^5
C) 5P5 D) 5C5
 
Answer & Explanation Answer: A) 5^10

Explanation:

Each of the 10 letters can be posted in any of the 5 boxes.

 

So, the first letter has 5 options, so does the second letter and so on and so forth for all of the 10 letters.

 

i.e. 5*5*5*….*5 (upto 10 times) = 5 ^ 10.

Report Error

View Answer Report Error Discuss

Q:

A certain marathon had 50 people running for first prize, second, and third prize.How many ways are there to correctly guess the first, second, and third place winners?

A) 2 B) 1
C) 4 D) 3
 
Answer & Explanation Answer: B) 1

Explanation:

There is 1 way to correctly guess who comes in first, second, and third. There is only one set of first, second and third place winners. You must correctly guess these three people, and there is only one way to do so.

Report Error

View Answer Report Error Discuss

Q:

Determine the total number of five-card hands that can be drawn from a deck of 52 cards.

A) 2589860 B) 2598970
C) 2598960 D) 2430803
 
Answer & Explanation Answer: C) 2598960

Explanation:

When a hand of cards is dealt, the order of the cards does not matter. If you are dealt two kings, it does not matter if the two kings came with the first two cards or the last two cards. Thus cards are combinations. There are 52 cards in a deck and we want to know how many different ways we can put them in groups of five at a time when order does not matter. The combination formula is used.

C(52,5) = 2,598,960

Report Error

View Answer Report Error Discuss

Q:

Find the number of ways to take 20 objects and arrange them in groups of 5 at a time where order does not matter.?

A) 57090 B) 15540
C) 15504 D) 23670
 
Answer & Explanation Answer: C) 15504

Explanation:

C520 = 15504

Report Error

View Answer Report Error Discuss

Q:

In how many ways can a group of 5 men and 2 women be made out of a total of 7 men and 3 women?

A) 135 B) 63
C) 125 D) 64
 
Answer & Explanation Answer: B) 63

Explanation:

Required number of ways = (7C5*3C2) = (7C2*3C1) = 63

Report Error

View Answer Report Error Discuss

Q:

From 5 consonants and 4 vowels, how many words can be formed using 3 consonants and 2 vowels ?

A) 7600 B) 7200
C) 6400 D) 3600
 
Answer & Explanation Answer: B) 7200

Explanation:

From 5 consonants, 3 consonants can be selected in 5C3 ways.

 

From 4 vowels, 2 vowels can be selected in 4C2 ways.

 

Now with every selection, number of ways of arranging 5 letters is 5P5ways.

 

Total number of words = 5C3*4C2*5P5

 

                                = 10x 6 x 5 x 4 x 3 x 2 x 1= 7200

Report Error

View Answer Report Error Discuss