Searching for "i"

Q:

Tickets are numbered from 1 to 18 are mixed up together and then 9 tickets are drawn at random. Find the probability that the ticket has a number, which is a multiple of 2 or 3.

A) 1/3 B) 3/5
C) 2/3 D) 5/6
 
Answer & Explanation Answer: C) 2/3

Explanation:

S = { 1, 2, 3, 4, .....18 } 

=> n(S) = 18

 

E1 = {2, 4, 6, 8, 10, 12, 14, 16, 18}

=> n(E1) = 9

 

E2 = {3, 6, 9, 12, 15, 18 }

=> n(E2) = 6

 

 E3 =E1E2={6, 12, 18} 

=> n(E3) = 3

 

E=E1  E2 = E1+E2-E3 

=> n(E) = 9 + 6 - 3 =12

 where E = { 2, 3, 4, 6, 8, 9, 10, 12, 12, 14, 15, 16, 18 }

 

P(E)=n(E)n(S)=1218=23

Report Error

View Answer Report Error Discuss

Filed Under: Probability

Q:

Four dice are thrown simultaneously. Find the probability that two of them show the same face and remaining two show the different faces.

A) 4/9 B) 5/9
C) 11/18 D) 7/9
 
Answer & Explanation Answer: B) 5/9

Explanation:

Select a number which ocurs on two dice out of six numbers (1, 2, 3, 4, 5, 6). This can be done in C16, ways.

 

Now select two distinct number out of remaining 5 numbers which can be done in C25 ways. Thus these 4 numbers can be arranged in 4!/2! ways.

 

So, the number of ways in which two dice show the same face and the remaining two show different faces is 

 C16×C25×4!2!=720

 =>  n(E) = 720

 PE=72064=59

Report Error

View Answer Report Error Discuss

Filed Under: Probability

Q:

One card is drawn from a pack of 52 cards , each of the 52 cards being equally likely to be drawn. Find the probability that the card  drawn is neither a spade nor a king.

A) 0 B) 9/13
C) 1/2 D) 4/13
 
Answer & Explanation Answer: B) 9/13

Explanation:

There are 13 spades ( including one king). Besides there are 3 more kings in remaining 3 suits

 

Thus   n(E) = 13 + 3 = 16

 

Hence nE¯=52-16=36 

  

Therefore, PE=3652=913

Report Error

View Answer Report Error Discuss

Filed Under: Probability

Q:

Two dice are rolled simultaneously. Find the probability of getting a total of 9.

A) 1/3 B) 1/9
C) 8/9 D) 9/10
 
Answer & Explanation Answer: B) 1/9

Explanation:

S = { (1, 1), (1, 2), (1, 3), (1, 4),(1, 5), (1, 6), (2, 1), (2, 2),.........(6, 5), (6, 6) }

=> n(S) = 6 x 6 = 36

E = {(6, 3), (5, 4), (4, 5), (3, 6) }

=> n(E) = 4

Therefore, P(E) = 4/36 = 1/9

Report Error

View Answer Report Error Discuss

Filed Under: Probability

Q:

An unbiased die is rolled. Find the probability of getting a multiple of 3?

A) 1/6 B) 1/3
C) 5/6 D) None of these
 
Answer & Explanation Answer: B) 1/3

Explanation:

S = { 1, 2, 3, 4, 5, 6 } 

=> n(S) = 6

E = { 3, 6}

=> n(E) = 2

Therefore, P(E) = 2/6 =1/3

Report Error

View Answer Report Error Discuss

Filed Under: Probability

Q:

Three fair coins are tossed simultaneously. Find the probability of getting more heads than the number of tails

A) 2 B) 7/8
C) 5/8 D) 1/2
 
Answer & Explanation Answer: D) 1/2

Explanation:

S = { HHH, HHT, HTH, HTT, THH, THT, TTH, TTT }

=> n(S) = 8

E = { HHH, HHT, HTH, THH }

=> n(E) = 4

P(E) = 4/8 = 1/2

Report Error

View Answer Report Error Discuss

Filed Under: Probability

Q:

Find the number of ways in which 21 balls can be distributed among 3 persons such that each person does not receive less than 5 balls.

A) 28 B) 14
C) 21 D) 7
 
Answer & Explanation Answer: A) 28

Explanation:

Let x, y, z be the number of balls received by the three persons, then

  

x5, y5, z5 and x+y+z=21

 

Let u0, v0, w0 then

 

 x + y + z =21

 

 u + 5 + v + 5 + w + 5 = 21

 

 u + v + w = 6 

 

Total number of solutions = C3-16+3-1=C28=28

Report Error

View Answer Report Error Discuss

Q:

In How many ways is it possible to make a selection by taking any number of 15 fruits, namely 3 oranges, 5 apples and 7 mangoes?

A) 131 B) 191
C) 68 D) 3720
 
Answer & Explanation Answer: B) 191

Explanation:

Out of 15 fruits, 7 are alike of one kind, 5 are alike of a second kind and 3 are alike of a third kind.

Hence, the required number of ways = [ (7+1) (5+1) (3+1) -1] =191

Report Error

View Answer Report Error Discuss