Searching for "%"

Q:

In a lottery, there are 10 prizes and 25 blanks. A lottery is drawn at random. What is the probability of getting a prize?

A) 2/7 B) 5/7
C) 1/5 D) 1/2
 
Answer & Explanation Answer: A) 2/7

Explanation:

Total number of outcomes possible, n(S) = 10 + 25 = 35

 

Total number of prizes, n(E) = 10

 P(E)=n(E)n(S)=1035=27

Report Error

View Answer Report Error Discuss

Filed Under: Probability

Q:

In a class, there are 15 boys and 10 girls. Three students are selected at random. The probability that 1 girl and 2 boys are selected, is:

A) 21/46 B) 1/5
C) 3/25 D) 1/50
 
Answer & Explanation Answer: A) 21/46

Explanation:

Let , S -  sample space        E - event of selecting 1 girl and 2 boys. 

Then, n(S) = Number ways of selecting 3 students out of 25 

                = 25C3 

                = 2300.

n(E) = 10C1×15C2 = 1050. 

P(E) = n(E)/n(s) = 1050/2300 = 21/46

Report Error

View Answer Report Error Discuss

Filed Under: Probability

Q:

In a class, there are 15 boys and 10 girls. Three students are selected at random. The probability that 1 girl and 2 boys are selected, is:

A) 21/46 B) 1/5
C) 3/25 D) 1/50
 
Answer & Explanation Answer: A) 21/46

Explanation:

Let S be the sample space and E be the event of selecting 1 girl and 2 boys.

 

Then, n(S) = Number ways of selecting 3 students out of 25

 

                = 25C3  = 2300.

 

         n(E)= 10C1*15C2 = 1050. 

 

P(E) = n(E)/n(s) = 1050/2300 = 21/46

Report Error

View Answer Report Error Discuss

Filed Under: Probability

Q:

Two dice are thrown simultaneously. What is the probability of getting two numbers whose product is even?

A) 3/4 B) 3/8
C) 5/16 D) 2/7
 
Answer & Explanation Answer: A) 3/4

Explanation:

In a simultaneous throw of two dice, we have n(S) = (6 x 6) = 36.

Then, E= {(1, 2), (1, 4), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 2), (3,4),(3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 2), (5, 4), (5, 6), (6, 1),6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}

n(E) = 27.

P(E) = n(E)/n(S) = 27/36 = 3/4.

Report Error

View Answer Report Error Discuss

Filed Under: Probability

Q:

Three unbiased coins are tossed. What is the probability of getting at most two heads?

A) 3/4 B) 7/8
C) 1/2 D) 1/4
 
Answer & Explanation Answer: B) 7/8

Explanation:

Here S = {TTT, TTH, THT, HTT, THH, HTH, HHT, HHH}

Let E = event of getting at most two heads.

Then E = {TTT, TTH, THT, HTT, THH, HTH, HHT}.

P(E) =n(E)/n(S)=7/8.

Report Error

View Answer Report Error Discuss

Filed Under: Probability

Q:

What would be the least number of years in which the simple interest on Rs.2600 at % will be an exact number of rupees ?

A) 2 B) 3
C) 4 D) 5
 
Answer & Explanation Answer: B) 3

Explanation:

 S.I=Rs.2600*203*1100*t

 S.I=Rs.5203*t

 t=3

Report Error

View Answer Report Error Discuss

Filed Under: Compound Interest
Exam Prep: Bank Exams
Job Role: Bank PO

Q:

What is the probability of getting a sum 9 from two throws of a dice?

A) 1/2 B) 3/4
C) 1/9 D) 2/9
 
Answer & Explanation Answer: C) 1/9

Explanation:

In two throws of a die, n(S) = (6 x 6) = 36.

Let E = event of getting a sum ={(3, 6), (4, 5), (5, 4), (6, 3)}.

P(E) =n(E)/n(S)=4/36=1/9.

Report Error

View Answer Report Error Discuss

Filed Under: Probability

Q:

A sum was put at simple interest at a certain rate for 10 years . Had it been put at 5% higher rate , it would have fetched Rs.600 more. What was the Sum?

A) Rs.1200 B) Rs.1300
C) Rs.1400 D) Rs.1500
 
Answer & Explanation Answer: A) Rs.1200

Explanation:

At 5% more rate, the increase in S.I for 10 years = Rs.600  (given)

So, at 5% more rate, the increase in SI for 1 year = 600/10 = Rs.60/-

i.e. Rs.60 is 5% of the invested sum

So, 1% of the invested sum = 60/5

Therefore, the invested sum = 60 × 100/5 = Rs.1200

Report Error

View Answer Report Error Discuss

Filed Under: Simple Interest
Exam Prep: Bank Exams
Job Role: Bank PO