2
Q:

Four dice are thrown simultaneously. Find the probability that two of them show the same face and remaining two show the different faces.

A) 4/9 B) 5/9
C) 11/18 D) 7/9

Answer:   B) 5/9



Explanation:

Select a number which ocurs on two dice out of six numbers (1, 2, 3, 4, 5, 6). This can be done in , ways.

Now select two distinct number out of remaining 5 numbers which can be done in  ways. Thus these 4 numbers can be arranged in 4!/2! ways.

So, the number of ways in which two dice show the same face and the remaining two show different faces is 

=>  n(E) = 720

Q:

Two dice are rolled simultaneously. Find the probability of getting the sum of numbers on the on the two faces divisible by 3 or 4?

A) 3/7 B) 7/11
C) 5/9 D) 6/13
 
Answer & Explanation Answer: C) 5/9

Explanation:

Here n(S) = 6 x 6 = 36

E={(1,2),(1,5),(2,1),(2,4),(3,3),(3,6),(4,2),(4,5),(5,1),(5,4),(6,3) ,(6,6),(1,3),(2,2),(2,6),(3,1),(3,5), (4,4),(5,3),(6,2)}

=> n(E)=20

Required Probability n(P) = n(E)/n(S) = 20/36 = 5/9.

Report Error

View Answer Workspace Report Error Discuss

9 67
Q:

A person starting with 64 rupees and making 6 bets, wins three times and loses three times, the wins and loses occurring in random order. The chance for a win is equal to the chance for a loss. If each wager is for half the money remaining at the time of the bet, then the final result is:

A) A gain of Rs. 27 B) A loss of Rs. 37
C) A loss of Rs. 27 D) A gain of Rs. 37
 
Answer & Explanation Answer: B) A loss of Rs. 37

Explanation:

As the win leads to multiplying the amount by 1.5 and loss leads to multiplying the amount by 0.5, we will multiply the initial amount by 1.5 thrice and by 0.5 thrice (in any order).

The overall resultant will remain same.

So final amount with the person will be (in all cases):

64(1.5)(1.5)(1.5)(0.5)(0.5)(0.5)= Rs. 27

Hence the final result is: 

64 − 27 37

A loss of Rs.37

Report Error

View Answer Workspace Report Error Discuss

8 118
Q:

A card is drawn from a pack of 52 cards. The probability of getting a queen of the club or a king of the heart is?

A) 1/26 B) 1/13
C) 2/13 D) 1/52
 
Answer & Explanation Answer: A) 1/26

Explanation:

Here in this pack of cards, n(S) = 52

Let E = event of getting a queen of the club or a king of the heart

Then, n(E) = 2

P(E) = n(E)/n(S) = 2/52 = 1/26

Report Error

View Answer Workspace Report Error Discuss

7 187
Q:

A room contains 3 brown, 5 black and 4 white chairs. Two chairs are picked and are put in the lawn. What is the probability that none of the chairs picked is white ?

A) 14/33 B) 14/55
C) 12/55 D) 13/33
 
Answer & Explanation Answer: A) 14/33

Explanation:

Total number of chairs = (3 + 5 + 4) = 12.

Let S be the sample space.

Then, n(s)= Number of ways of picking 2 chairs out of 12

12×11/2×66

Let n(E) = number of events of selecting 2 chairs for selecting no white chairs.

=> 8C8×7/2×28

Therefore required probability = 28/66 = 14/33.

Report Error

View Answer Workspace Report Error Discuss

7 561
Q:

The probability that a bowler bowled a ball from a point will hit by the batsman is ¼. Three such balls are bowled simultaneously towards the batsman from that very point. What is the probability that the batsman will hit the ball ?

A) 37/64 B) 27/56
C) 11/13 D) 9/8
 
Answer & Explanation Answer: A) 37/64

Explanation:

Probability of not hitting the ball = 1- 1/4 =IBPS RRB Clerk Level Quiz : Quantitative Aptitude | 11 -09 - 17
Then, the probability that the batsman will hit the ball =IBPS RRB Clerk Level Quiz : Quantitative Aptitude | 11 -09 - 17

Report Error

View Answer Workspace Report Error Discuss

9 519