4
Q:
 A) 1 B) 2 C) 3 D) 4

Explanation:

$\sqrt{\left(\frac{\left(0.75{\right)}^{3}}{1-0.75}+\left[0.75+\left(0.75{\right)}^{2}+1\right]\right)}=\sqrt{\frac{\left(0.75{\right)}^{3}+\left(1-0.75\right)\left[\left(1{\right)}^{2}+\left(0.75{\right)}^{2}+1×0.75\right]}{1-0.75}}$

Q:

Cube root of 729 then square it

 A) 9 B) 36 C) 81 D) 144

Explanation:

729 = 9 x 9 x 9

=> Cube root of 729 = 9

Now, required square of 9 = 9 x 9 = 81.

0 36
Q:

If (89)2 is added to the square of a number, the answer so obtained is 16202. What is the (1/26) of that number?

 A) 5.65 B) 2.7 C) 3.5 D) 6.66

Explanation:

Let the number is = x

(89)2 + x2 = 16202

x2 = 8281

x = 91

=> (1/26) of 91 = 3.5

10 474
Q:

What should come in place of x in the following equation?

 A) 13 B) 12 C) 17 D) 16

Explanation:

Then x2 = $\sqrt{162}x\sqrt{128}$

= Sqrt of 82 x 62 x 32

= 8 x 6 x 3

x2  = 144.

x  = 12.

5 453
Q:

Find the value of $\sqrt{\frac{\mathbf{1}\mathbf{.}\mathbf{21}\mathbf{x}\mathbf{0}\mathbf{.}\mathbf{9}}{\mathbf{1}\mathbf{.}\mathbf{1}\mathbf{x}\mathbf{0}\mathbf{.}\mathbf{11}}}$?

 A) 0 B) 1 C) 3 D) 5

Explanation:

Given   $\sqrt{\frac{1.21x0.9}{1.1x0.11}}$

$\sqrt{\frac{1.21x100x0.9x10}{1.1x10x0.11x100}}$

$\sqrt{9}$

= 3.

5 726
Q:

If  then find the value of ${\mathbit{x}}^{\mathbf{3}}\mathbf{-}\mathbf{6}{\mathbit{x}}^{\mathbf{2}}\mathbf{+}\mathbf{6}\mathbit{x}$ ?

 A) 1 B) 2 C) 3 D) 4

Explanation:

Given that

So x - 2 =

Now cubing on both sides, we get

=>

Therefore,

5 541
Q:

If

 A) 3/4 B) 4/3 C) 3/5 D) 5/3

Explanation:

By simplifying, we get 4/3

3 1051
Q:

If x =

 A) 3sqrt{3} B) 8sqrt{3} C) 14 D) 14+8sqrt{3}

Explanation:

31 1685
Q:

 A) 3 B) 3sqrt{2} C) 6 D) None of these

Explanation: