A) 8 hrs 45 min | B) 8 hrs 42 min |

C) 8 hrs | D) 8 hrs 34 min |

Explanation:

Number of pages typed by Adam in 1 hour = = 6

Number of pages typed by Smith in 1 hour = = 8

Number of pages typed by both in 1 hour = (6 + 8) = 14

Time taken by both to type 110 pages = (120 * 1/14) = 8 = 8 hrs 34 min.

A) 50 | B) 100 |

C) 70 | D) 35 |

Explanation:

Let the Efficiency of pavan be E(P)

Let the Efficiency of sravan be E(S)

Here Work W = LCM(25,20) = 100

Now, E(P+2S) = 100/25 = 4 ....(1)

E(2P+S) = 100/20 = 5 ....(2)

Hence, from (1) & (2) we get

E(S) = 1

=> Number of days Savan alone work to complete the work = 100/1 = 100 days.

A) 64 | B) 62 |

C) 58 | D) 56 |

Explanation:

Days remaining 124 – 64 = 60 days

Remaining work = 1 - 2/3 = 1/3

Let men required men for working remaining days be 'm'

So men required = (120 x 64)/2 = (m x 60)/1 => m = 64

Men discharge = 120 – 64 = 56 men.

A) 12 days | B) 14 days |

C) 13 days | D) 16 days |

Explanation:

Now, Total work = LCM(16, 8) = 48

A's one day work = + 48/16 = + 3

B's one day work = - 48/8 = -6

Given A worked for 5 days to build the wall => 5 days work = 5 x 3 = + 15

2days B joined with A in working = 2(3 - 6) = - 6

Remaining Work of building wall = 48 - (15 - 6) = 39

Now this remaining work will be done by A in = 39/3 = 13 days.

A) 3 | B) 6 |

C) 9 | D) 12 |

Explanation:

The mother completes the job in x hours.

So, the daughter will take 2x hours to complete the same job.

In an hour, the mother will complete 1/x of the total job.

In an hour, the daughter will complete 1/2x of the total job.

So, if the mother and daughter work together, in an hour they will complete 1/x + 1/2x of the job.

i.e., in an hour they will complete 3/2x of the job.

The question states that they complete the entire task in 6 hours if they work together.

i.e., they complete 1/6 th of the task in an hour.

Equating the two information, we get 3/2x = 1/6

By solving for x, we get 2x = 18 or x = 9.

The mother takes 9 hours to complete the job.

A) 47/7 days | B) 59/6 days |

C) 48/5 days | D) 57/5 days |

Explanation:

Amount of work K can do in 1 day = 1/16

Amount of work L can do in 1 day = 1/12

Amount of work K, L and M can together do in 1 day = 1/4

Amount of work M can do in 1 day = 1/4 - (1/16 + 1/12) = 3/16 – 1/12 = 5/48

=> Hence M can do the job on 48/5 days = 9 (3/5) days