A) 8 hrs 45 min | B) 8 hrs 42 min |

C) 8 hrs | D) 8 hrs 34 min |

Explanation:

Number of pages typed by Adam in 1 hour = 36/6 = 6

Number of pages typed by Smith in 1 hour = 40/5 = 8

Number of pages typed by both in 1 hour = (6 + 8) = 14

Time taken by both to type 110 pages = (120 * 1/14) = $8\frac{4}{7}$ = 8 hrs 34 min.

A) 16 days | B) 13 days |

C) 15 days | D) 12 days |

Explanation:

Ratio of times taken by P & Q = 100 : 130 = 10:13

Let Q takes x days to do the work

Then, 10:13 :: 23:x

=> x = 23x13/10

=> x = 299/10

P's 1 day's work = 1/23

Q's 1 day's work = 10/299

(P+Q)'s 1 day's work = (1/23 + 10/299) = 23/299 = 1/13

Hence, P & Q together can complete the work in **13** days.

A) 3 days | B) 6 days |

C) 4 days | D) 2 days |

Explanation:

From the given data,

=> (2 M + 3W) 8 = (3M + 2W)7

=> 16M + 24W = 21M + 14 W

=> 10W = 5M

=> 2W = M

=> 14W × **?** = 7W × 8

**?** = **4 days**

A) 16 | B) 18 |

C) 19 | D) 21 |

Explanation:

Clearly total persons are increased in 28/35 :: 52/65 = 4:5.

As time is inversely proportional to men, so total **time** will decrease in the ratio 5:4.

Hence, 22.5 x 4/5 = 18 days.

A) 1/3 | B) 2/3 |

C) 1/6 | D) 5/6 |

Explanation:

Given X can do in 10 days

=> 1 day work of X = 1/10

Y can do in 15 days

=> 1 day work of Y = 1/15

1day work of (X + Y) = 1/10 + 1/15 = 1/6

Given they are hired for 5 days

=> 5 days work of (X + Y) = 5 x 1/6 = 5/6

Therefore, **Unfinished work = 1 - 5/6 = 1/6 **

A) 3 days | B) 4 days |

C) 5 days | D) 6 days |

Explanation:

Given 10 men take 15 days to complete a work

=> Total mandays = 15 x 10 = 150

Let the work be 150 mandays.

=> Now 37 men can do 150 mandays in 150/37 =~ 4 days

A) 9 hrs | B) 7 hrs |

C) 13 hrs | D) 11 hrs |

Explanation:

Given,

P can fill in 12 hrs

Q can fill in 15 hrs

R can fill in 20 hrs

=> Volume of tank = LCM of 12, 15, 20 = 60 lit

=> P alone can fill the tank in 60/12 = 5 hrs

=> Q alone can fill the tank in 60/15 = 4 hrs

=> R alone can fill the tank in 60/20 = 3 hrs

Tank can be filled in the way that

(P+Q) + (P+R) + (P+Q) + (P+R) + ....

=> Tank filled in 2 hrs = (5+4) + (5+3) = 9 + 8 = 17 lit

=> In 6 hrs = 17 x 6/2 = 51 lit

=> In 7th hr = 51 + (5+4) = 51 + 9 = 60 lit

=> So, total tank will be filled in **7 hrs**.

A) 56 days | B) 54 days |

C) 60 days | D) 64 days |

Explanation:

(P+Q)'s 1 day work = 1/24

P's 1 day work = 1/32

=> Q's 1 day work = 1/24 - 1/32 = 1/96

Work done by (P+Q) in 8 days = 8/24 = 1/3

Remainining work = 1 - 1/3 = 2/3

Time taken by Q to complete the remaining work = 2/3 x 96 = 64 days.

A) 36 | B) 40 |

C) 42 | D) 38 |

Explanation:

Remaining work = 1 - 9/10 = 1/10

=> A & B together completes 1/10 of work in 4 days

=> 1 work can completed in ------ ? days

Let it be x days

=> $\frac{4}{{\displaystyle \frac{1}{10}}}=\frac{x}{1}$

=> x = 40 days.

Hence, A & B together can complete the work in 40 days.