# Quantitative Aptitude - Arithmetic Ability Questions

## What is Quantitative Aptitude - Arithmetic Ability?

Quantitative Aptitude - Arithmetic Ability test helps measure one's numerical ability, problem solving and mathematical skills. Quantitative aptitude - arithmetic ability is found in almost all the entrance exams, competitive exams and placement exams. Quantitative aptitude questions includes questions ranging from pure numeric calculations to critical arithmetic reasoning. Questions on graph and table reading, percentage analysis, categorization, simple interests and compound interests, clocks, calendars, Areas and volumes, permutations and combinations, logarithms, numbers, percentages, partnerships, odd series, problems on ages, profit and loss, ratio & proportions, stocks &shares, time & distance, time & work and more .

Every aspirant giving Quantitative Aptitude Aptitude test tries to solve maximum number of problems with maximum accuracy and speed. In order to solve maximum problems in time one should be thorough with formulas, theorems, squares and cubes, tables and many short cut techniques and most important is to practice as many problems as possible to find yourself some tips and tricks in solving quantitative aptitude - arithmetic ability questions.

Wide range of Quantitative Aptitude - Arithmetic Ability questions given here are useful for all kinds of competitive exams like Common Aptitude Test(CAT), MAT, GMAT, IBPS and all bank competitive exams, CSAT, CLAT, SSC Exams, ICET, UPSC, SNAP Test, KPSC, XAT, GRE, Defence, LIC/G IC, Railway exams,TNPSC, University Grants Commission (UGC), Career Aptitude test (IT companies), Government Exams and etc.

A) 54 past 4 | B) (53 + 7/11) past 4 |

C) (54 + 8/11) past 4 | D) (54 + 6/11) past 4 |

Explanation:

4 o'clock, the hands of the watch are 20 min. spaces apart.

To be in opposite directions, they must be 30 min. spaces apart.

Minute hand will have to gain 50 min. spaces.

55 min. spaces are gained in 60 min

50 min. spaces are gained in $\frac{60}{55}\times 50$ min. or $54\frac{6}{11}$

Required time = $54\frac{6}{11}$ min. past 4.

A) 360 | B) 180 |

C) 90 | D) 60 |

Explanation:

Angle traced by the hour hand in 6 hours=(360/12)*6

A) 16 | B) 18 |

C) 20 | D) 22 |

Explanation:

Let S.P. of 45 lemons be Rs. x.

Then, 80 : 40 = 120 : x or x = $\frac{40\times 120}{80}$= 60

For Rs.60, lemons sold = 45

For Rs.24, lemons sold =$\frac{45}{60}\times 24$= 18.

A) 40 | B) 80 |

C) 120 | D) 200 |

Explanation:

Let the numbers be 3x, 4x and 5x.

Then, their L.C.M. = 60*x*.

So, 60*x* = 2400 or x = 40.

The numbers are (3 x 40), (4 x 40) and (5 x 40).

Hence, required H.C.F. = 40.

A) 100% | B) 200% |

C) 300% | D) 400% |

Explanation:

Let the C.P be Rs.100 and S.P be Rs.x, Then

The profit is (x-100)

Now the S.P is doubled, then the new S.P is 2x

New profit is (2x-100)

Now as per the given condition;

=> 3(x-100) = 2x-100

By solving, we get

x = 200

Then the Profit percent = (200-100)/100 = 100

Hence the profit percentage is 100%

A) 0.754 | B) 0.854 |

C) 0.954 | D) 0.654 |

Explanation:

log 27 = 1.431

log$\left({3}^{3}\right)$ = 1.431

3 log 3 = 1.431

log 3 = 0.477

log 9 = log(${3}^{2}$)= 2 log 3 = (2 x 0.477) = 0.954

A) 5/12 | B) 1/6 |

C) 1/2 | D) 7/9 |

Explanation:

Clearly, n(S) = (6 x 6) = 36.

Let E = Event that the sum is a prime number.

Then E= { (1, 1), (1, 2), (1, 4), (1, 6), (2, 1), (2, 3), (2, 5), (3, 2), (3, 4), (4, 1), (4,3),(5, 2), (5, 6), (6, 1), (6, 5) }

n(E) = 15.

P(E) = n(E)/n(S) = 15/36 = 5/12.

A) 110 | B) 120 |

C) 130 | D) 140 |

Explanation:

let length = x and breadth = y then

2(x+y) = 46 => x+y = 23

x²+y² = 17² = 289

now (x+y)² = 23²

=> x²+y²+2xy= 529

=> 289+ 2xy = 529

=> xy = 120

area = xy = 120 sq.cm