Total profit = Rs. 880

A's share for managing the business i.e

% =

Remaining profit of A and B as per their capital = 880 - 110 = Rs. 770

Ratio of amounts = 5000 : 6000 = 5 : 6

Sum of ratios = 5 + 6 = 11

A's share =

A's total share = 350 + 110 = Rs. 460

B's share =

A) 2 months | B) 2.5 months |

C) 3 months | D) 3.5 months |

Explanation:

Ratio of profit of Rohith and Puneeth = 3600 x 12 : 2400 x P

= **3600 x 12/2400P = 2/1**

=> P = 9

So, Puneeth joined the business after (12 - P) = **12 - 9 = 3 months.**

A) 24000 | B) 16000 |

C) 12000 | D) 32000 |

Explanation:

Given Dileep and Narender started a business.

Dileep invested 8000 for 12 months

Let Narender invested 'p' for 6 months

At the end of the year, their profit ratio is 1 : 1.

Hence,

8000 x 12 : p x 6

p : 16000

p/16000 = 1/1

=> p = 16,000

Hence, Narender invested amount is **Rs. 16,000.**

A) Rs. 127 | B) Rs. 271 |

C) Rs. 721 | D) Rs. 217 |

Explanation:

ATQ,

P : Q = 5 : 12 = 10 : 24

Q : R = 4 : 5.5 = 24 : 33

P:Q:R = 10 : 24 : 33

Sum of the ratios = 10 + 24 + 33 = 67

Difference between the share of R & Q

= (33-24/67 x 2018)

= 9/67 x 2018

= Rs. 271.

A) Rs. 1250 | B) Rs. 600 |

C) Rs. 900 | D) Rs. 1500 |

Explanation:

From the given data,

Ratio of capital **= 12000 : 14400 = 5 : 6**

Required Difference =

$\frac{\mathbf{6}\mathbf{}\mathbf{-}\mathbf{}\mathbf{5}}{\mathbf{6}\mathbf{}\mathbf{+}\mathbf{}\mathbf{5}}\mathbf{}\left(\frac{\mathbf{88}}{\mathbf{100}}\mathbf{}\mathbf{x}\mathbf{}\mathbf{7500}\right)\mathbf{}\mathbf{+}\mathbf{}\frac{\mathbf{12}}{\mathbf{100}}\mathbf{}\mathbf{x}\mathbf{}\mathbf{7500}\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}=\frac{1}{11}\mathrm{x}88\mathrm{x}75+12\mathrm{x}75\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}=600+900\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\mathbf{=}\mathbf{}\mathbf{1500}$

A) 16547 | B) 17212 |

C) 14875 | D) 27848 |

A) Rs, 1109 | B) Rs. 1107 |

C) Rs. 1111 | D) Rs. 1113 |

Explanation:

From the given data,

K's profit : L's profit = 7x x 11 : 9x x 7

**= 11:9**

Therefore, L's profit =** 9 x 2460/20 = Rs. 1107**

A) 26,250 | B) 19,200 |

C) 18,650, | D) 15,200 |

Explanation:

Ratio of investment of all the three members = (7 x 12) : (9 x 12) : (2/3 x 9 x 6)

**= 7 : 9 : 3**

Given Rushi's one year profit = Rs. 5600

=> Let the total profit = Rs. P

Then,

P x 7/19 = 5600

Total profit **P = 19 x 5600/7 = Rs. 15,200.**

A) Rs. 5000 | B) Rs. 6200 |

C) Rs. 8100 | D) R. 7600 |

Explanation:

Let the amount invested by saketh = RS. p

Now, that of sandeep = 20,000 x 6

saketh = 12 x p

Ratio of their earnings = 120000 : 12p = 6000 : (9000 - 6000)

=> $\frac{\mathbf{120000}}{\mathbf{12}\mathbf{p}}\mathbf{}\mathbf{=}\mathbf{}\frac{\mathbf{6000}}{\mathbf{3000}}\mathbf{}\phantom{\rule{0ex}{0ex}}\mathbf{=}\mathbf{}\mathbf{}\mathbf{p}\mathbf{=}\mathbf{}\mathbf{Rs}\mathbf{.}\mathbf{}\mathbf{5000}$

Hence, the amount investe by saketh = Rs. p = Rs. 5000.