8
Q:

# In how many ways can the letters of the word EDUCATION be rearranged so that the relative position of the vowels and consonants remain the same as in the word EDUCATION?

 A) 4! x 4! B) 5! x 5! C) 4! x 5! D) 3! x 4!

Explanation:

The word EDUCATION is a 9 letter word, with none of the letters repeating.

The vowels occupy 3rd,5th,7th and 8th position in the word and the remaining 5 positions are occupied by consonants

As the relative position of the vowels and consonants in any arrangement should remain the same as in the word EDUCATION, the vowels can occupy only the afore mentioned 4 places and the consonants can occupy1st,2nd,4th,6th and 9th positions.

The 4 vowels can be arranged in the 3rd,5th,7th and 8th position in 4! Ways.

Similarly, the 5 consonants can be arranged in1st,2nd,4th,6th and 9th position in5! Ways.

Hence, the total number of ways = 4! × 5!

Q:

In how many ways the letters of the word 'CIRCUMSTANCES' can be arranged such that all vowels came at odd places and N always comes at end?

 A) 1,51,200 ways. B) 5,04,020 ways C) 72,000 ways D) None of the above

Explanation:

In circumcstances word there are 3C's, 2S's, I, U,R, T, A, N, E

Total = 13 letters

But last letter must be N

Hence, available places = 12

In that odd places = 1, 3, 5, 7, 9, 11

Owvels = 4

This can be done in 6P4 ways

Remaining 7 letters can be arranged in 7!/3! x 2! ways

Hence, total number of ways = 6P4 x 7!/3! x 2! = 360 x 5040/12 = 1,51,200 ways.

0 34
Q:

In how many different ways can the letters of the word 'RITUAL' be arranged?

 A) 720 B) 5040 C) 360 D) 180

Explanation:

The number of letters in the given word RITUAL = 6

Then,

Required number of different ways can the letters of the word 'RITUAL' be arranged = 6!

=> 6 x 5 x 4 x 3 x 2 x 1 = 720

2 156
Q:

How many four digits numbers greater than 6000 can be made using the digits 0, 4, 2, 6 together with repetition.

 A) 64 B) 63 C) 62 D) 60

Explanation:

Given digits are 0, 4, 2, 6

Required 4 digit number should be greater than 6000.

So, first digit must be 6 only and the remaining three places can be filled by one of all the four digits.

This can be done by

1x4x4x4 = 64

Greater than 6000 means 6000 should not be there.

Hence, 64 - 1 = 63.

4 243
Q:

A card is drawn from a pack of 52 cards. What is the probability that either card is black or a king?

 A) 15/52 B) 17/26 C) 13/17 D) 15/26

Explanation:

Number of cards in a pack of cards = 52

Number of black cards = 26

Number of king cards = 4 (2 Red, 2 Black)

Required, the probability that if a card is drawn either card is black or a king =

4 348
Q:

A box contains 2 blue balls, 3 green balls and 4 yellow balls. In how many ways can 3 balls be drawn from the box, if at least one green ball is to be included in the draw?

 A) 48 B) 24 C) 64 D) 32

Explanation:

Total number of balls = 2 + 3 + 4 = 9

Total number of ways 3 balls can be drawn from 9 = 9C3

No green ball is drawn = 9 - 3 = 6 = 6C3

Required number of ways if atleast one green ball is to be included = Total number of ways - No green ball is drawn

= 9C3 - 6C3

= 9x8x7/3x2  -  6x5x4/3x2

= 84 - 20

= 64 ways.

4 449
Q:

How many 4-digit numbers can be formed from the digits 2, 3, 5, 6, 7 and 9, which are divisible by 5 and none of the digits is repeated?

 A) 60 B) 48 C) 36 D) 20

Explanation:

Here given the required digit number is 4 digit.

It must be divisible by 5. Hence, the unit's digit in the required 4 digit number must be 0 or 5. But here only 5 is available.

x x x 5

The remaining places can be filled by remaining digits as 5 x 4 x 3 ways.

Hence, number 4-digit numbers can be formed are 5 x 4 x 3 = 20 x 3 = 60.

1 442
Q:

In how many ways the word 'SCOOTY' can be arranged such that 'S' and 'Y' are always at two ends?

 A) 720 B) 360 C) 120 D) 24

Explanation:

Given word is SCOOTY

ATQ,

Except S & Y number of letters are 4(C 2O's T)

Hence, required number of arrangements = 4!/2! x 2! = 4!

= 4 x 3 x 2

= 24 ways.

3 718
Q:

In how many ways word of 'GLACIOUS' can be arranged such that 'C' always comes at end?

 A) 3360 B) 5040 C) 720 D) 1080