A) Rs.1200 | B) Rs.1230 |

C) Rs.1260 | D) Rs.1290 |

Explanation:

Let the new S.P be x, then

(100 - loss%) : (1st S.P.) = (100 + gain%) : (2nd S.P.)

$\Rightarrow \left(\frac{95}{1140}=\frac{105}{x}\right)$

=> x = 1260

A) Rs. 1000 | B) Rs. 1020 |

C) Rs. 1040 | D) Rs. 980 |

Explanation:

Let the marked price of the router be Rs. P

From the given data,

$\mathbf{P}\mathbf{}\mathbf{x}\mathbf{}\frac{\mathbf{85}}{\mathbf{100}}\mathbf{}\mathbf{-}\mathbf{}\mathbf{P}\mathbf{}\mathbf{x}\mathbf{}\frac{\mathbf{80}}{\mathbf{100}}\mathbf{}\mathbf{=}\mathbf{}\mathbf{51}\phantom{\rule{0ex}{0ex}}\mathrm{P}\mathrm{x}\frac{5}{100}=51\phantom{\rule{0ex}{0ex}}\mathbf{\Rightarrow}\mathbf{}\mathbf{P}\mathbf{}\mathbf{=}\mathbf{}\frac{\mathbf{5100}}{\mathbf{5}}\mathbf{}\mathbf{=}\mathbf{}\mathbf{1020}\mathbf{}$

Hence, the original marked price of the router is Rs. 1020.

A) Rs. 250 | B) Rs. 125 |

C) Rs. 225 | D) Rs. 200 |

Explanation:

Initial amount spent on trouser by the man = Rs. 1250

Now, by the reduction of 20% in 1250, he can buy t-shirt too.

=> t-shirt cost = 20% of 1250 = 20 x 1250/100 = 250

Therefore, the price of the t-shirt = **Rs. 250.**

A) 20% | B) 40% |

C) 45% | D) 35% |

Explanation:

Cost price = Rs. 30

Selling price = Rs. 50

Gain = Rs. 20

Profit % = Gain/cost price x 100 = 20/50 x 100 = 40%

A) RS. 200 | B) Rs. 160 |

C) Rs. 100 | D) Rs. 40 |

Explanation:

The first lost Rs. 100, but after the thief bought Rs. 60 goods, he get that Rs. 100 back but he lost Rs. 60 value of goods and Rs. 40 in change.

So, a total of 60 + 40 = 100 Rs. the owner lose.

A) Rs. 32 | B) Rs. 35 |

C) Rs. 36 | D) Rs. 33 |

Explanation:

Let the cost price of the bottle = **Rs. 100**

Selling price of the bottle = **Rs. 100 - Rs. 9 = Rs. 91**

Then, from the given data,

**=> 112 (1/2) - 91 = 15**

=> 21 (1/2) = 15

**=> 43 = 15**

**Then 100 = ?**

1500/43 = 34.885 =~ 35

Hence, the cost price of the bottle = **Rs. 35**

A) 16% | B) 14.5% |

C) 12% | D) 10.5% |

Explanation:

Let cost of each cell phone = Rs.100 & Sale = 100 phones.

Money receipt = Rs.(100 x 100) = Rs.10,000

New cost per cellphone = Rs.120 and New sale = 70 phones

New Money Receipt = Rs.(70 x 120) = Rs.8400

Then the effect of sales = decrease in money receipt =

$\frac{\mathbf{1600}}{\mathbf{10000}}\mathbf{}\mathbf{x}\mathbf{}\mathbf{100}\mathbf{}\mathbf{=}\mathbf{}\mathbf{16}\mathbf{\%.}$

A) Rs. 400 | B) Rs. 420 |

C) Rs. 460 | D) Rs. 480 |

Explanation:

Let the cost price of the fruits be 'C.P'

From the given data, after analysis it can be solved as

**(121% of C.P) - (125% of 91% of C.P) = 29**

**$\frac{\mathbf{121}}{\mathbf{100}}\mathbf{}\mathbf{C}\mathbf{.}\mathbf{P}\mathbf{}\mathbf{}\mathbf{-}\mathbf{}\mathbf{}\frac{\mathbf{125}}{\mathbf{100}\mathbf{}}\mathbf{}\mathbf{x}\mathbf{}\frac{\mathbf{91}}{\mathbf{100}}\mathbf{}\mathbf{x}\mathbf{}\mathbf{C}\mathbf{.}\mathbf{P}\mathbf{}\mathbf{=}\mathbf{}\mathbf{29}\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\left(\frac{121}{100}-\frac{125\mathrm{x}91}{100\mathrm{x}100}\right)\mathrm{C}.\mathrm{P}=29\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}(12100-125\mathrm{x}91)\mathrm{C}.\mathrm{P}=290000\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}(12100-11375)\mathrm{C}.\mathrm{P}=290000\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}725\mathrm{C}.\mathrm{P}=290000\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\mathbf{C}\mathbf{.}\mathbf{P}\mathbf{}\mathbf{=}\mathbf{}\mathbf{400}$**

Hence, the cost price of the fruits **= Rs. 400.**

A) 58 | B) 60 |

C) 55 | D) 45 |

Explanation:

-5-----------------------5-------------------20

5-(-5) = 10

20-5= 15

Ratio of cost price of book1 and book2 = 3:2

Then cost price of book 1 is given by

(3/5) x 100 = Rs. 60.