Searching for "V"

Q:

Consider the word ROTOR. Whichever way you read it, from left to right or from right to left, you get the same word. Such a word is known as palindrome. Find the maximum possible number of 5-letter palindromes.

A) 17756 B) 17576
C) 12657 D) 12666
 
Answer & Explanation Answer: B) 17576

Explanation:

The first letter from the right can be chosen in 26 ways because there are 26 alphabets.

 

Having chosen this, the second letter can be chosen in 26 ways

 

The first two letters can chosen in 26 x 26 = 676 ways

 

Having chosen the first two letters, the third letter can be chosen in 26 ways.

 

All the three letters can be chosen in 676 x 26 =17576 ways.

 

It implies that the maximum possible number of five letter palindromes is 17576 because the fourth letter is the same as the second letter and the fifth letter is the same as the first letter.

Report Error

View Answer Report Error Discuss

Q:

In how many different ways can the letters of the word 'OPTICAL' be arranged so that the vowels always come together?

A) 360 B) 700
C) 720 D) 120
 
Answer & Explanation Answer: C) 720

Explanation:

The word 'OPTICAL' contains 7 different letters.

When the vowels OIA are always together, they can be supposed to form one letter.

Then, we have to arrange the letters PTCL (OIA).

Now, 5 letters can be arranged in 5! = 120 ways.

The vowels (OIA) can be arranged among themselves in 3! = 6 ways.

Required number of ways = (120 x 6) = 720.

Report Error

View Answer Report Error Discuss

Q:

In how many different ways can the letters of the word 'MATHEMATICS' be arranged so that the vowels always come together?

A) 120960 B) 120000
C) 146700 D) None of these
 
Answer & Explanation Answer: A) 120960

Explanation:

In the word 'MATHEMATICS', we treat the vowels AEAI as one letter.

 

Thus, we have MTHMTCS (AEAI).

 

Now, we have to arrange 8 letters, out of which M occurs twice, T occurs twice and the rest are different.

 

Number of ways of arranging these letters = 8!/(2! x 2!)= 10080.

 

Now, AEAI has 4 letters in which A occurs 2 times and the rest are different.

 

Number of ways of arranging these letters =4!/2!= 12.

 

Required number of words = (10080 x 12) = 120960

Report Error

View Answer Report Error Discuss

Q:

A Map is an Array,which contains the addresses of the free space in swap device that are allocatable resources,and the number of the resource unit available there.

A) TRUE B) FALSE
Answer & Explanation Answer: A) TRUE

Explanation:

The given statement is clearly true.

Report Error

View Answer Workspace Report Error Discuss

Subject: Operating Systems
Exam Prep: GRE

Q:

In how many different ways can the letters of the word 'DETAIL' be arranged in such a way that the vowels occupy only the odd positions?

A) 36 B) 25
C) 42 D) 120
 
Answer & Explanation Answer: A) 36

Explanation:

There are 6 letters in the given word, out of which there are 3 vowels and 3 consonants.

 

Let us mark these positions as under: 

                                                      (1) (2) (3) (4) (5) (6) 

Now, 3 vowels can be placed at any of the three places out 4, marked 1, 3, 5.  

Number of ways of arranging the vowels = 3P3 = 3! = 6.

 

Also, the 3 consonants can be arranged at the remaining 3 positions. 

Number of ways of these arrangements = 3P3 = 3! = 6. 

Total number of ways = (6 x 6) = 36.

Report Error

View Answer Report Error Discuss

Q:

Out of 7 consonants and 4 vowels, how many words of 3 consonants and 2 vowels can be formed?

A) 25200 B) 52000
C) 120 D) 24400
 
Answer & Explanation Answer: A) 25200

Explanation:

Number of ways of selecting (3 consonants out of 7) and (2 vowels out of 4) = (7C3*4C2

= 210. 

 

Number of groups, each having 3 consonants and 2 vowels = 210. 

 

Each group contains 5 letters. 

 

Number of ways of arranging 5 letters among themselves = 5! = 120 

 

Required number of ways = (210 x 120) = 25200.

Report Error

View Answer Report Error Discuss

Q:

In how many different ways can the letters of the word 'CORPORATION' be arranged so that the vowels always come together

A) 50000 B) 40500
C) 5040 D) 50400
 
Answer & Explanation Answer: D) 50400

Explanation:

In the word 'CORPORATION', we treat the vowels OOAIO as one letter.

 

Thus, we have CRPRTN (OOAIO).

 

This has 7 (6 + 1) letters of which R occurs 2 times and the rest are different.

 

Number of ways arranging these letters =7!/2!= 2520.

 

Now, 5 vowels in which O occurs 3 times and the rest are different, can be arranged in 3!/5!= 20 ways.

 

Required number of ways = (2520 x 20) = 50400.

Report Error

View Answer Report Error Discuss

Q:

In how many different ways can the letters of the word 'LEADING' be arranged in such a way that the vowels always come together?

A) 720 B) 520
C) 700 D) 750
 
Answer & Explanation Answer: A) 720

Explanation:

The word 'LEADING' has 7 different letters.

When the vowels EAI are always together, they can be supposed to form one letter.

Then, we have to arrange the letters LNDG (EAI).

Now, 5 (4 + 1) letters can be arranged in 5! = 120 ways.

The vowels (EAI) can be arranged among themselves in 3! = 6 ways.

Required number of ways = (120 x 6) = 720.

Report Error

View Answer Report Error Discuss