Searching for "at____"

Q:

In how many ways can an animal trainer arrange 5 lions and 4 tigers in a row so that no two lions are together?

A) 2800 B) 2880
C) 2600 D) 3980
 
Answer & Explanation Answer: B) 2880

Explanation:

They have to be arranged in the following way :

                                                                    L  T  L  T  L  T  L  T  L

The 5 lions should be arranged in the 5 places marked ‘L’.

This can be done in 5! ways.

The 4 tigers should be in the 4 places marked ‘T’.

This can be done in 4! ways.

Therefore, the lions and the tigers can be arranged in 5!´ 4! ways = 2880 ways.

Report Error

View Answer Report Error Discuss

Q:

Suppose you want to arrange your English, Hindi, Mathematics, History, Geography and Science books on a shelf. In how many ways can you do it?

A) 360 B) 780
C) 720 D) 240
 
Answer & Explanation Answer: C) 720

Explanation:

We have to arrange 6 books.

The number of permutations of n objects is n! = n. (n – 1) . (n – 2) ... 2.1

Here n = 6 and therefore, number of permutations is 6.5.4.3.2.1 = 720

Report Error

View Answer Report Error Discuss

Q:

What scheme does the Kernel in Unix System V follow while choosing a swap device among the multiple swap devices?

Answer

Kernel follows Round Robin scheme choosing a swap device among the multiple swap devices in Unix System V.

Report Error

View answer Workspace Report Error Discuss

Subject: Operating Systems Exam Prep: GATE

Q:

How many 3-digit numbers can be formed with the digits 1,4,7,8 and 9 if the digits are not repeated ?

A) 60 B) 26
C) 50 D) 64
 
Answer & Explanation Answer: A) 60

Explanation:

Three digit number will have unit’s, ten’s and hundred’s place.

 

Out of 5 given digits any one can take the unit’s place.

 

This can be done in 5 ways. ...              (i)

 

After filling the unit’s place, any of the four remaining digits can take the ten’s place.

 

This can be done in 4 ways. ...              (ii)

 

After filling in ten’s place, hundred’s place can be filled from any of the three remaining digits.

 

This can be done in 3 ways. ... (iii) 

 

So,by counting principle, the number of 3 digit numbers = 5x 4 x 3 = 60

Report Error

View Answer Report Error Discuss

Q:

In how many different ways can the letters of the word 'OPTICAL' be arranged so that the vowels always come together?

A) 360 B) 700
C) 720 D) 120
 
Answer & Explanation Answer: C) 720

Explanation:

The word 'OPTICAL' contains 7 different letters.

When the vowels OIA are always together, they can be supposed to form one letter.

Then, we have to arrange the letters PTCL (OIA).

Now, 5 letters can be arranged in 5! = 120 ways.

The vowels (OIA) can be arranged among themselves in 3! = 6 ways.

Required number of ways = (120 x 6) = 720.

Report Error

View Answer Report Error Discuss

Q:

In how many different ways can the letters of the word 'MATHEMATICS' be arranged so that the vowels always come together?

A) 120960 B) 120000
C) 146700 D) None of these
 
Answer & Explanation Answer: A) 120960

Explanation:

In the word 'MATHEMATICS', we treat the vowels AEAI as one letter.

 

Thus, we have MTHMTCS (AEAI).

 

Now, we have to arrange 8 letters, out of which M occurs twice, T occurs twice and the rest are different.

 

Number of ways of arranging these letters = 8!/(2! x 2!)= 10080.

 

Now, AEAI has 4 letters in which A occurs 2 times and the rest are different.

 

Number of ways of arranging these letters =4!/2!= 12.

 

Required number of words = (10080 x 12) = 120960

Report Error

View Answer Report Error Discuss

Q:

A Map is an Array,which contains the addresses of the free space in swap device that are allocatable resources,and the number of the resource unit available there.

A) TRUE B) FALSE
Answer & Explanation Answer: A) TRUE

Explanation:

The given statement is clearly true.

Report Error

View Answer Workspace Report Error Discuss

Subject: Operating Systems
Exam Prep: GRE

Q:

In how many different ways can the letters of the word 'DETAIL' be arranged in such a way that the vowels occupy only the odd positions?

A) 36 B) 25
C) 42 D) 120
 
Answer & Explanation Answer: A) 36

Explanation:

There are 6 letters in the given word, out of which there are 3 vowels and 3 consonants.

 

Let us mark these positions as under: 

                                                      (1) (2) (3) (4) (5) (6) 

Now, 3 vowels can be placed at any of the three places out 4, marked 1, 3, 5.  

Number of ways of arranging the vowels = 3P3 = 3! = 6.

 

Also, the 3 consonants can be arranged at the remaining 3 positions. 

Number of ways of these arrangements = 3P3 = 3! = 6. 

Total number of ways = (6 x 6) = 36.

Report Error

View Answer Report Error Discuss