# Bank Exams Questions

Q:

(51 + 52 + 53 + .........+100) is equal to

51 + 52 + 53 + ...........+ 100

= (1 + 2 + 3 + .... + 100) - (1 + 2 + 3 + ...... + 50)

= It is in the form of

= n1 = 100 , n2 = 50

=

=  (5050 - 1275) = 3775

25289
Q:

A wire can be bent in the form of a circle of radius 56cm. If it is bent in the form of a square, then its area will be

 A) 7744 B) 8844 C) 5544 D) 4444

Explanation:

length of wire = $2\mathrm{\pi r}$= 2 x (22/7 ) x 56 = 352 cm
side of the square = 352/4 = 88cm
area of the square = 88 x 88 = 7744sq cm

49 24146
Q:

A clock is set right at 5 a.m. The clock loses 16 minutes in 24 hours.What will be the true time when the clock indicates 10 p.m. on 4th day?

 A) 11pm B) 12pm C) 1pm D) 2pm

Explanation:

Time from 5 am. on a day to 10 pm. on 4th day = 89 hours.

Now 23 hrs 44 min. of this clock = 24 hours of correct clock.

356/15 hrs of this clock = 24 hours of correct clock

89 hrs of this clock = (24 x 31556 x 89) hrs of correct clock.

= 90 hrs of correct clock.

So, the correct time is 11 p.m.

74 23966
Q:

A man walked diagonally across a square lot. Approximately, what was the percent saved by not walking along the edges?

 A) 30 B) 40 C) 50 D) 60

Explanation:

Let the side of the square(ABCD) be x meters.

Then, AB + BC = 2x metres.

AC = $\sqrt{2x}$ = (1.41x) m.

Saving on 2x metres = (0.59x) m.

Saving % =$\frac{0.59x}{2x}*100$ = 30% (approx)

37 23897
Q:

A parallelogram has sides 30m and 14m and one of its diagonals is 40m long. Then its area is

 A) 136 B) 236 C) 336 D) 436

Explanation:

let ABCD be the given parallelogram

area of parallelogram ABCD = 2 x (area of triangle ABC)

now a = 30m, b = 14m and c = 40m

s=1/2 x (30+14+40) = 42

Area of triangle ABC = $\sqrt{\left[s\left(s-a\right)\left(s-b\right)\left(s-c\right)\right]}$

= $\sqrt{\left[42\left(12\right)\left(28\right)\left(2\right)\right]}$= 168sq m

area of parallelogram ABCD = 2 x 168 = 336 sq m

47 23870
Q:

If log 2 = 0.30103, Find the number of digits in 256 is

 A) 17 B) 19 C) 23 D) 25

Explanation:

$\mathrm{log}\left({2}^{56}\right)$ =56*0.30103 =16.85768.

Its characteristics is 16.

Hence, the number of digits in ${2}^{56}$ is 17.

65 23020
Q:

A computer cannot "boot" if it does not have the _____

 A) Compiler B) Loader C) Operating system D) Assembler

Explanation:

Filed Under: Computer
Exam Prep: Bank Exams

58 22734
Q:

A watch which gains uniformly ,is 5 min,slow at 8 o'clock in the morning on sunday and it is 5 min 48 sec.fast at 8 p.m on following sunday. when was it correct?

 A) 7pm on wednesday B) 20 min past 7pm on wednesday C) 15min past 7pm on wednesday D) 8pm on wednesday

Explanation:

This sunday morning at 8:00 AM, the watch is 5 min. Slow, and the next sunday at 8:00PM it becomes 5 min 48 sec fast.  The watch gains $5+5\frac{48}{60}$ min in a time of  (7×24)+12 = 180 hours.

To show the correct time, it has to gain 5 min.

$\frac{54}{5}min\to 180hours$

5min ->

$\left(5}{\frac{54}{2}}×180\right)$

$83\frac{1}{3}hrs=72hrs+11\frac{1}{3}hrs=3days+11hrs+20min$

So the correct time will be shown on wednesday at 7:20 PM