3
Q:

# A fair six-sided die is rolled twice. What is the probability of getting 4 on the first roll and not getting 6 on the second roll ?

 A) 1/36 B) 5/36 C) 1/12 D) 1/9

Answer:   B) 5/36

Explanation:

The two events mentioned are independent.

The first roll of the die is independent of the second roll. Therefore the probabilities can be directly multiplied.

P(getting first 4) = 1/6

P(no second 6) = 5/6

Therefore P(getting first 4 and no second 6) = 1/6 x 5/6 = 5/36

Q:

In a box, there are four marbles of white color and five marbles of black color. Two marbles are chosen randomly. What is the probability that both are of the same color?

 A) 2/9 B) 5/9 C) 4/9 D) 0

Answer & Explanation Answer: C) 4/9

Explanation:

Number of white marbles = 4

Number of Black marbles = 5

Total number of marbles = 9

Number of ways, two marbles picked randomly = 9C2

Now, the required probability of picked marbles are to be of same color = 4C2/9C2  +  5C2/9C2

= 1/6 + 5/18

= 4/9.

Report Error

0 182
Q:

A bag contains 3 red balls, 5 yellow balls and 7 pink balls. If one ball is drawn at random from the bag, what is the probability that it is either pink or red?

 A) 2/3 B) 1/8 C) 3/8 D) 3/4

Answer & Explanation Answer: A) 2/3

Explanation:

Given number of balls = 3 + 5 + 7 = 15

One ball is drawn randomly = 15C1

probability that it is either pink or red =

Report Error

5 220
Q:

Two letters are randomly chosen from the word TIME. Find the probability that the letters are T and M?

 A) 1/4 B) 1/6 C) 1/8 D) 4

Answer & Explanation Answer: B) 1/6

Explanation:

Required probability is given by P(E) =

Report Error

10 421
Q:

14 persons are seated around a circular table. Find the probability that 3 particular persons always seated together.

 A) 11/379 B) 21/628 C) 24/625 D) 26/247

Answer & Explanation Answer: C) 24/625

Explanation:

Total no of ways = (14 – 1)! = 13!

Number of favorable ways = (12 – 1)! = 11!

So, required probability = $\left(\frac{\left(\mathbf{11}\mathbf{!}\mathbf{×}\mathbf{3}\mathbf{!}\right)}{\mathbf{13}\mathbf{!}}\right)$ = $\frac{39916800×6}{6227020800}$ = $\frac{\mathbf{24}}{\mathbf{625}}$

Report Error

10 633
Q:

Two dice are rolled simultaneously. Find the probability of getting the sum of numbers on the on the two faces divisible by 3 or 4?

 A) 3/7 B) 7/11 C) 5/9 D) 6/13

Answer & Explanation Answer: C) 5/9

Explanation:

Here n(S) = 6 x 6 = 36

E={(1,2),(1,5),(2,1),(2,4),(3,3),(3,6),(4,2),(4,5),(5,1),(5,4),(6,3) ,(6,6),(1,3),(2,2),(2,6),(3,1),(3,5), (4,4),(5,3),(6,2)}

=> n(E)=20

Required Probability n(P) = n(E)/n(S) = 20/36 = 5/9.

Report Error

24 776
Q:

A person starting with 64 rupees and making 6 bets, wins three times and loses three times, the wins and loses occurring in random order. The chance for a win is equal to the chance for a loss. If each wager is for half the money remaining at the time of the bet, then the final result is:

 A) A gain of Rs. 27 B) A loss of Rs. 37 C) A loss of Rs. 27 D) A gain of Rs. 37

Answer & Explanation Answer: B) A loss of Rs. 37

Explanation:

As the win leads to multiplying the amount by 1.5 and loss leads to multiplying the amount by 0.5, we will multiply the initial amount by 1.5 thrice and by 0.5 thrice (in any order).

The overall resultant will remain same.

So final amount with the person will be (in all cases):

64(1.5)(1.5)(1.5)(0.5)(0.5)(0.5)= Rs. 27

Hence the final result is:

64 − 27 37

A loss of Rs.37

Report Error

12 895
Q:

A card is drawn from a pack of 52 cards. The probability of getting a queen of the club or a king of the heart is?

 A) 1/26 B) 1/13 C) 2/13 D) 1/52

Answer & Explanation Answer: A) 1/26

Explanation:

Here in this pack of cards, n(S) = 52

Let E = event of getting a queen of the club or a king of the heart

Then, n(E) = 2

P(E) = n(E)/n(S) = 2/52 = 1/26

Report Error

8 708
Q:

A room contains 3 brown, 5 black and 4 white chairs. Two chairs are picked and are put in the lawn. What is the probability that none of the chairs picked is white ?

 A) 14/33 B) 14/55 C) 12/55 D) 13/33

Answer & Explanation Answer: A) 14/33

Explanation:

Total number of chairs = (3 + 5 + 4) = 12.

Let S be the sample space.

Then, n(s)= Number of ways of picking 2 chairs out of 12

12×11/2×66

Let n(E) = number of events of selecting 2 chairs for selecting no white chairs.

=> 8C8×7/2×28

Therefore required probability = 28/66 = 14/33.

Report Error

13 1167