Q:

A) 7pm on wednesday | B) 20 min past 7pm on wednesday |

C) 15min past 7pm on wednesday | D) 8pm on wednesday |

Answer: B) 20 min past 7pm on wednesday

Explanation:

Explanation:

This sunday morning at 8:00 AM, the watch is 5 min. Slow, and the next sunday at 8:00PM it becomes 5 min 48 sec fast. The watch gains $5+5\frac{48}{60}$ min in a time of (7×24)+12 = 180 hours.

To show the correct time, it has to gain 5 min.

$\frac{54}{5}min\to 180hours$

5min ->

$\left(\raisebox{1ex}{$5$}\!\left/ \!\raisebox{-1ex}{$\frac{54}{2}$}\right.\times 180\right)$

$83\frac{1}{3}hrs=72hrs+11\frac{1}{3}hrs=3days+11hrs+20min$

So the correct time will be shown on wednesday at 7:20 PM

Q:

A) 21.5 deg | B) 78 deg |

C) 56 deg | D) 56.5 deg |

5
840

Q:

A) 2.20 PM | B) 2.50 PM |

C) 2.30 PM | D) 2.40 PM |

3
1035

Q:

A) 168.5 deg | B) 162 deg |

C) 166.5 deg | D) 165 deg |

2
1074

Q:

A) West | B) South |

C) East | D) North |

5
849

Q:

A) 1/200 | B) 1/300 |

C) 1/400 | D) 1/600 |

2
878

Q:

A) 3 hours | B) 6 hours |

C) 2 hours | D) 1 hour |

2
838

4
741

Q:

A) 16.5 deg | B) 18 deg |

C) 13.5 deg | D) 11.5 deg |

6
1035