Q:

A) 10000 | B) 20000 |

C) 40000 | D) 50000 |

Answer: B) 20000

Explanation:

Explanation:

Let sum=Rs.x

C.I. when compounded half yearly = $\left[x{\left(1+\frac{10}{100}\right)}^{4}-x\right]=\frac{4641}{10000}$

C.I. when compounded annually =$\left[x{\left(\frac{20}{100}\right)}^{2}-x\right]=\frac{11}{25}$

$\frac{4641}{10000}x-\frac{11}{25}x=482$

=> x=20000

Q:

A) 3,000 | B) 2,500 |

C) 2,800 | D) 2,400 |

0
53

Q:

A) 5,000 | B) 4,800 |

C) 6,000 | D) 5,400 |

0
368

Q:

A) Rs. 2,560 | B) Rs. 2,480 |

C) Rs. 2,500 | D) Rs. 2,520 |

3
492

Q:

A) ₹10,200 | B) ₹11,400 |

C) ₹7,620 | D) ₹9,600 |

2
1895

Q:

A) 25,650 | B) 26,750 |

C) 25,000 | D) 24,860 |

1
5622

0
4648

Q:

A) Rs. 600 | B) Rs. 520 |

C) Rs. 500 | D) Rs. 480 |

0
409

Q:

A) ₹ 29.18 | B) ₹ 12.48 |

C) ₹ 24.72 | D) ₹ 19.46 |

0
2163