# Job Roles

A) 118 | B) 105 |

C) 108 | D) 110 |

Explanation:

(24 + 31 + 18) days = 73 days = 1/5 year .

P = Rs 3000 and R = 18 % p.a.

$S.I=\left(\raisebox{1ex}{$3000*18*{\displaystyle \frac{1}{5}}$}\!\left/ \!\raisebox{-1ex}{$100$}\right.\right)$

A) Rs.350 | B) Rs.450 |

C) Rs.550 | D) Rs.650 |

Explanation:

P = Rs. 6250, R = 14 % & T = (146/365) years = 2/5 years .

S.I=$Rs.\left[\raisebox{1ex}{$6250*14*{\displaystyle \frac{2}{5}}$}\!\left/ \!\raisebox{-1ex}{$100$}\right.\right]=Rs.350$

A) 6500 | B) 7500 |

C) 8500 | D) 9500 |

Explanation:

*P *= 68000, *R *=$\frac{50}{3}$% & *T *= 9 months (3/4 years)

$S.I=\frac{p\times r\times t}{100}=\left[\raisebox{1ex}{$(6800\times \frac{50}{3}\times {\displaystyle \frac{3}{4})}$}\!\left/ \!\raisebox{-1ex}{$100$}\right.\right]=Rs.8500$

A) I alone sufficient while II alone not sufficient to answer | B) II alone sufficient while I alone not sufficient to answer |

C) Either I or II alone sufficient to answer | D) Both I and II are necessary to answer |

Explanation:

Let the sum be Rs. x.

I gives, S.I. = Rs. 7000 and T = 7 years.

II gives, Sum + S.I. for 5 years = 2 x Sum Sum = S.I. for 5 years.

Now, S.I. for 7 years = Rs. 7000.

therefore, S.I. for 1 year = Rs. 1000.

Thus, I and II both are needed to get the answer.

A) Rs. 112.50 | B) Rs.150.25 |

C) Rs.167.50 | D) Rs.170 |

Explanation:

$gainin2years=Rs.\left[\left(5000*\frac{25}{4}*\frac{2}{100}\right)-\left(\frac{5000*4*2}{100}\right)\right]$

= Rs. (625 - 400)

= Rs. 225

$gainin1year=Rs.\left(\frac{225}{2}\right)=112.50$

A) 5% | B) 8% |

C) 12% | D) 15% |

Explanation:

S.I. for 3 years = Rs. (12005 - 9800) = Rs. 2205.

S.I. for 5 years = Rs.$\frac{2205}{3}\times 5$= Rs.3675

Principle = Rs.(9800-3675) = Rs.6125

Hence, Rate = $\left[\frac{100\times 3675}{6125\times 5}\right]$ =12%

A) Rs.2000 | B) Rs.10000 |

C) Rs.15000 | D) Rs.20000 |

Explanation:

Principal = $Rs\left(\frac{100\times 5400}{12\times 3}\right)=Rs.15000$

A) 5% | B) 7% |

C) 7.5% | D) 10% |

Explanation:

Let the rate be R% p.a.

Then, $\frac{5000\times r\times 2}{100}+\frac{3000\times r\times 4}{100}=2200$

Rate = 10%