5
Q:

In how many ways the word 'SCOOTY' can be arranged such that 'S' and 'Y' are always at two ends?

A) 720 B) 360
C) 120 D) 24

Answer:   D) 24



Explanation:

Given word is SCOOTY

ATQ,

Except S & Y number of letters are 4(C 2O's T)

Hence, required number of arrangements = 4!/2! x 2! = 4!

= 4 x 3 x 2

= 24 ways.

Q:

What is the value of 100P2 ?

A) 10000 B) 9900
C) 8900 D) 7900
 
Answer & Explanation Answer: B) 9900

Explanation:

Here in 100P2, P says that permutations and is defined as in how many ways 2 objects can be selected from 100 and can be arranged.

 

That can be done as,

 

100 P2  = 100!/(100 - 2)!

= 100 x 99 x 98!/98!

= 100 x 99 

= 9900.

Report Error

View Answer Workspace Report Error Discuss

0 199
Q:

In how many different ways can the letters of the word 'THERAPY' be arranged so that the vowels always come together?

A) 720 B) 1440
C) 1800 D) 3600
 
Answer & Explanation Answer: B) 1440

Explanation:

Given word is THERAPY.

Number of letters in the given word = 7

Number of vowels in the given word = 2 = A & E

Required number of different ways, the letters of the word THERAPY arranged such that vowels always come together is

6! x 2! = 720 x 2 = 1440.

Report Error

View Answer Workspace Report Error Discuss

4 206
Q:

In how many different ways the letters of the word 'TRANSFORMER' can be arranged such that 'N' and 'S' always come together?

A) 112420 B) 85120
C) 40320 D) 1209600
 
Answer & Explanation Answer: D) 1209600

Explanation:

Given word is TRANSFORMER.

Number of letters in the given word = 11 (3 R's)

 

Required, number of ways the letters of the word 'TRANSFORMER' can be arranged such that 'N' and 'S' always come together is

10! x 2!/3!

= 3628800 x 2/6

= 1209600

Report Error

View Answer Workspace Report Error Discuss

0 187
Q:

In how many ways the letters of the word 'CIRCUMSTANCES' can be arranged such that all vowels came at odd places and N always comes at end?

A) 1,51,200 ways. B) 5,04,020 ways
C) 72,000 ways D) None of the above
 
Answer & Explanation Answer: A) 1,51,200 ways.

Explanation:

In circumcstances word there are 3C's, 2S's, I, U,R, T, A, N, E

Total = 13 letters

But last letter must be N

Hence, available places = 12

In that odd places = 1, 3, 5, 7, 9, 11

Owvels = 4

This can be done in 6P4 ways 

Remaining 7 letters can be arranged in 7!/3! x 2! ways

 

Hence, total number of ways = 6P4 x 7!/3! x 2! = 360 x 5040/12 = 1,51,200 ways.

Report Error

View Answer Workspace Report Error Discuss

1 318
Q:

In how many different ways can the letters of the word 'RITUAL' be arranged?

A) 720 B) 5040
C) 360 D) 180
 
Answer & Explanation Answer: A) 720

Explanation:

The number of letters in the given word RITUAL = 6

Then, 

Required number of different ways can the letters of the word 'RITUAL' be arranged = 6!

=> 6 x 5 x 4 x 3 x 2 x 1 = 720

Report Error

View Answer Workspace Report Error Discuss

3 322
Q:

How many four digits numbers greater than 6000 can be made using the digits 0, 4, 2, 6 together with repetition.

A) 64 B) 63
C) 62 D) 60
 
Answer & Explanation Answer: B) 63

Explanation:

Given digits are 0, 4, 2, 6

Required 4 digit number should be greater than 6000.

So, first digit must be 6 only and the remaining three places can be filled by one of all the four digits.

This can be done by

1x4x4x4 = 64

Greater than 6000 means 6000 should not be there.

Hence, 64 - 1 = 63.

Report Error

View Answer Workspace Report Error Discuss

6 506
Q:

A card is drawn from a pack of 52 cards. What is the probability that either card is black or a king? 

A) 15/52 B) 17/26
C) 13/17 D) 15/26
 
Answer & Explanation Answer: D) 15/26

Explanation:

Number of cards in a pack of cards = 52

Number of black cards = 26

Number of king cards = 4 (2 Red, 2 Black)

 

Required, the probability that if a card is drawn either card is black or a king = 

2652 + 452 = 3052 = 1526

Report Error

View Answer Workspace Report Error Discuss

5 532
Q:

A box contains 2 blue balls, 3 green balls and 4 yellow balls. In how many ways can 3 balls be drawn from the box, if at least one green ball is to be included in the draw?

A) 48 B) 24
C) 64 D) 32
 
Answer & Explanation Answer: C) 64

Explanation:

Total number of balls = 2 + 3 + 4 = 9

Total number of ways 3 balls can be drawn from 9 = 9C3

No green ball is drawn = 9 - 3 = 6 = 6C3

Required number of ways if atleast one green ball is to be included = Total number of ways - No green ball is drawn

= 9C3 - 6C3

= 9x8x7/3x2  -  6x5x4/3x2

= 84 - 20

= 64 ways.

Report Error

View Answer Workspace Report Error Discuss

5 670