4
Q:

Using numbers from 0 to 9 the number of 5 digit telephone numbers that can be formed is

A) 1,00,000 B) 59,049
C) 3439 D) 6561

Answer:   C) 3439



Explanation:

The numbers 0,1,2,3,4,5,6,7,8,9 are 10 in number while preparing telephone numbers any number can be used any number of times.

 

This can be done in 105ways, but '0' is there

 

So, the numbers starting with '0' are to be excluded is 94 numbers.

 

 Total 5 digit telephone numbers = 105- 94 = 3439

Q:

In how many ways the letters of the word 'CIRCUMSTANCES' can be arranged such that all vowels came at odd places and N always comes at end?

A) 1,51,200 ways. B) 5,04,020 ways
C) 72,000 ways D) None of the above
 
Answer & Explanation Answer: A) 1,51,200 ways.

Explanation:

In circumcstances word there are 3C's, 2S's, I, U,R, T, A, N, E

Total = 13 letters

But last letter must be N

Hence, available places = 12

In that odd places = 1, 3, 5, 7, 9, 11

Owvels = 4

This can be done in 6P4 ways 

Remaining 7 letters can be arranged in 7!/3! x 2! ways

 

Hence, total number of ways = 6P4 x 7!/3! x 2! = 360 x 5040/12 = 1,51,200 ways.

Report Error

View Answer Workspace Report Error Discuss

0 11
Q:

In how many different ways can the letters of the word 'RITUAL' be arranged?

A) 720 B) 5040
C) 360 D) 180
 
Answer & Explanation Answer: A) 720

Explanation:

The number of letters in the given word RITUAL = 6

Then, 

Required number of different ways can the letters of the word 'RITUAL' be arranged = 6!

=> 6 x 5 x 4 x 3 x 2 x 1 = 720

Report Error

View Answer Workspace Report Error Discuss

2 146
Q:

How many four digits numbers greater than 6000 can be made using the digits 0, 4, 2, 6 together with repetition.

A) 64 B) 63
C) 62 D) 60
 
Answer & Explanation Answer: B) 63

Explanation:

Given digits are 0, 4, 2, 6

Required 4 digit number should be greater than 6000.

So, first digit must be 6 only and the remaining three places can be filled by one of all the four digits.

This can be done by

1x4x4x4 = 64

Greater than 6000 means 6000 should not be there.

Hence, 64 - 1 = 63.

Report Error

View Answer Workspace Report Error Discuss

4 235
Q:

A card is drawn from a pack of 52 cards. What is the probability that either card is black or a king? 

A) 15/52 B) 17/26
C) 13/17 D) 15/26
 
Answer & Explanation Answer: D) 15/26

Explanation:

Number of cards in a pack of cards = 52

Number of black cards = 26

Number of king cards = 4 (2 Red, 2 Black)

 

Required, the probability that if a card is drawn either card is black or a king = 

2652 + 452 = 3052 = 1526

Report Error

View Answer Workspace Report Error Discuss

4 336
Q:

A box contains 2 blue balls, 3 green balls and 4 yellow balls. In how many ways can 3 balls be drawn from the box, if at least one green ball is to be included in the draw?

A) 48 B) 24
C) 64 D) 32
 
Answer & Explanation Answer: C) 64

Explanation:

Total number of balls = 2 + 3 + 4 = 9

Total number of ways 3 balls can be drawn from 9 = 9C3

No green ball is drawn = 9 - 3 = 6 = 6C3

Required number of ways if atleast one green ball is to be included = Total number of ways - No green ball is drawn

= 9C3 - 6C3

= 9x8x7/3x2  -  6x5x4/3x2

= 84 - 20

= 64 ways.

Report Error

View Answer Workspace Report Error Discuss

4 444
Q:

How many 4-digit numbers can be formed from the digits 2, 3, 5, 6, 7 and 9, which are divisible by 5 and none of the digits is repeated?

A) 60 B) 48
C) 36 D) 20
 
Answer & Explanation Answer: A) 60

Explanation:

Here given the required digit number is 4 digit.

It must be divisible by 5. Hence, the unit's digit in the required 4 digit number must be 0 or 5. But here only 5 is available.

x x x 5

The remaining places can be filled by remaining digits as 5 x 4 x 3 ways.

 

Hence, number 4-digit numbers can be formed are 5 x 4 x 3 = 20 x 3 = 60.

Report Error

View Answer Workspace Report Error Discuss

1 442
Q:

In how many ways the word 'SCOOTY' can be arranged such that 'S' and 'Y' are always at two ends?

A) 720 B) 360
C) 120 D) 24
 
Answer & Explanation Answer: D) 24

Explanation:

Given word is SCOOTY

ATQ,

Except S & Y number of letters are 4(C 2O's T)

Hence, required number of arrangements = 4!/2! x 2! = 4!

= 4 x 3 x 2

= 24 ways.

Report Error

View Answer Workspace Report Error Discuss

3 717
Q:

In how many ways word of 'GLACIOUS' can be arranged such that 'C' always comes at end?

A) 3360 B) 5040
C) 720 D) 1080
 
Answer & Explanation Answer: B) 5040

Explanation:

Given word is GLACIOUS has 8 letters.

=> C is fixed in one of the 8 places

Then, the remaining 7 letters can be arranged in 7! ways = 5040.

Report Error

View Answer Workspace Report Error Discuss

2 883