A) rs.1175 | B) rs.1375 |

C) rs.1475 | D) rs.1575 |

Explanation:

PW = $\frac{100\times Amount}{100+\left(R\times T\right)}$

A) Rs. 600 | B) Rs. 768 |

C) Rs. 878 | D) Rs. 668 |

Explanation:

We know that,

P.W = 100×T.D/R×T

= 100×168/14×2

P.W = 600.

Now, required Sum = (P.W. + T.D.)

= Rs. (600 + 168)

= Rs. 768.

A) Rs.948 | B) Rs.876 |

C) Rs.768 | D) Rs.658 |

Explanation:

P.W. = $\frac{100\times T.D}{R\times T}$ = $\frac{100\times 168}{14\times 2}$ = 600.

Sum = (P.W. + T.D.) = Rs. (600 + 168) = Rs. 768.

A) Rs.600 | B) Rs.601 |

C) Rs.602 | D) Rs.603 |

Explanation:

PW = $\frac{Amount}{{\left(1+{\displaystyle \frac{R}{100}}\right)}^{T}}$

A) 10years | B) 20years |

C) 30years | D) 40years |

Explanation:

PW = $\frac{100\times Amount}{100+\left(R\times T\right)}$

A) (i) | B) (ii) |

C) both (i) and (ii) | D) none |

Explanation:

PW = $\frac{100\times Amount}{100+\left(R\times T\right)}$

A) 6months | B) 5months |

C) 8months | D) 3months |

Explanation:

P.W= Amount – (T.D)

Time = $\frac{100\times TD}{PW\times R}$

A) (6 + 2/3)% | B) (5+ 2/3)% |

C) (2+ 2/3)% | D) (4+ 2/3)% |

A) 27months | B) 23months |

C) 20months | D) 12months |

Explanation:

P.W. = Rs. (1600 - 160) = Rs. 1440

∴ S.I. on Rs.1440 at 5% is Rs. 160.

∴ Time = [100 * 160 / 1440 * 5] = 20/9 years = [20/9 * 12] months = 27 months.