#
AIEEE Questions

A) Friday | B) Saturday |

C) Sunday | D) Thursday |

Explanation:

15 Aug, 1947 = (1946 years + Period from 1.1.1947 to 15.8.1947)

Odd days in 1600 years = 0

Odd days in 300 years = 1

46 years = (35 ordinary years + 11 leap years) = (35 x 1 + 11 x 2)= 57 (8 weeks + 1 day) = 1 odd day

Jan. Feb. Mar. Apr. May. Jun. Jul. Aug

( 31 + 28 + 31 + 30 + 31 + 30 + 31 + 15 ) = 227 days = (32 weeks + 3 days) = 3 odd days.

Total number of odd days = (0 + 1 + 1 + 3) = 5 odd days.

Hence, as the number of odd days = 5 , given day is Friday.

A) Tuesday | B) Monday |

C) Sunday | D) Saturday |

Explanation:

Each day of the week is repeated after 7 days.

So, after 63 days, it will be Monday.

After 61 days, it will be Saturday.

A) Rs. 169.50 | B) Rs.1700 |

C) Rs. 175.50 | D) Rs. 180 |

Explanation:

Since first second varieties are mixed in equal proportions, so their average price = Rs.(126+135)/2= Rs.130.50

So, Now the mixture is formed by mixing two varieties, one at Rs. 130.50 per kg and the other at say Rs. 'x' per kg in the ratio 2 : 2, i.e., 1 : 1. We have to find 'x'.

Cost of 1 kg tea of 1st kind Cost of 1 kg tea of 2nd kind

x-153/22.50 = 1 => x - 153 = 22.50 => x=175.50.

Hence, price of the third variety = Rs.175.50 per kg.

A) 4% of a | B) 6% of a |

C) 8% of a | D) 10% of a |

Explanation:

20% of a = b => (20/100)a = b

b% of 20 =(b/100) x 20 = (20a/100) x (1/100) x (20) = 4a/100 = 4% of a.

A) Madhya Pradesh | B) West Bengal |

C) Rajasthan | D) Odisha |

Explanation:

The tropic of cancer passes through **8 Indian states**.

They are Gujarat, Rajasthan, Madhya Pradesh, Chhattisgarh, West Bengal, Jharkand, Tripura and Mizoram.

A) 1/4 | B) 1/2 |

C) 3/4 | D) 7/12 |

Explanation:

Let A, B, C be the respective events of solving the problem and $\overline{)A},\overline{)B},\overline{)C}$ be the respective events of not solving the problem. Then A, B, C are independent event

$\therefore \overline{)A},\overline{)B},\overline{)C}$ are independent events

Now, P(A) = 1/2 , P(B) = 1/3 and P(C)=1/4

$P\left(\overline{)A}\right)=\frac{1}{2},P\left(\overline{)B}\right)=\frac{2}{3},P\left(\overline{)C}\right)=\frac{3}{4}$

$\therefore $ P( none solves the problem) = P(not A) and (not B) and (not C)

= $P\left(\overline{)A}\cap \overline{)B}\cap \overline{)C}\right)$

= $P\left(\overline{)A}\right)P\left(\overline{)B}\right)P\left(\overline{)C}\right)$ $\left[\because \overline{)A},\overline{)B},\overline{)C}areIndependent\right]$

= $\frac{1}{2}\times \frac{2}{3}\times \frac{3}{4}$

= $\frac{1}{4}$

Hence, P(the problem will be solved) = 1 - P(none solves the problem)

= $1-\frac{1}{4}$= **3/4**

A) 200, 250, 300 | B) 300, 200, 250 |

C) 200, 300, 400 | D) None of these |

Explanation:

A's 5 days work = 50%

B's 5 days work = 33.33%

C's 2 days work = 16.66% [100- (50+33.33)]

Ratio of contribution of work of A, B and C = $50:33\frac{1}{3}:16\frac{2}{3}$

= 3 : 2 : 1

A's total share = Rs. 1500

B's total share = Rs. 1000

C's total share = Rs. 500

A's one day's earning = Rs.300

B's one day's earning = Rs.200

C's one day's earning = Rs.250

A) Dr. G. D. Bist | B) J.R.D. Tata |

C) J.M. Tagore | D) Khudada Khan |

Explanation:

**Dr. G. D. Bist**, *Guinness Record Holder*, the first-ever Ph.D. in Stenography in the world.

He had achieved a highest speed of **250 w.p.m**. in Shorthand.