# Permutations and Combinations Questions

**FACTS AND FORMULAE FOR PERMUTATIONS AND COMBINATIONS QUESTIONS**

**1. Factorial Notation: **Let n be a positive integer. Then, factorial n, denoted n! is defined as: n!=n(n - 1)(n - 2) ... 3.2.1.

Examples : We define 0! = 1.

4! = (4 x 3 x 2 x 1) = 24.

5! = (5 x 4 x 3 x 2 x 1) = 120.

**2. Permutations:** The different arrangements of a given number of things by taking some or all at a time, are called permutations.

Ex1 : All permutations (or arrangements) made with the letters a, b, c by taking two at a time are (ab, ba, ac, ca, bc, cb).

Ex2 : All permutations made with the letters a, b, c taking all at a time are:( abc, acb, bac, bca, cab, cba)

**Number of Permutations:** Number of all permutations of n things, taken r at a time, is given by:

$P_{r}^{n}=n\left(n-1\right)\left(n-2\right)....\left(n-r+1\right)=\frac{n!}{\left(n-r\right)!}$

Ex : (i) $P_{2}^{6}=\left(6\times 5\right)=30$ (ii) $P_{3}^{7}=\left(7\times 6\times 5\right)=210$

Cor. number of all permutations of n things, taken all at a time = n!.

Important Result: If there are n subjects of which p1 are alike of one kind; p2 are alike of another kind; p3 are alike of third kind and so on and pr are alike of rth kind,

such that $\left({p}_{1}+{p}_{2}+...+{p}_{r}\right)=n$

Then, number of permutations of these n objects is :

$\frac{n!}{({p}_{1}!)\times ({p}_{2}!)....({p}_{r}!)}$

**3. Combinations: **Each of the different groups or selections which can be formed by taking some or all of a number of objects is called a combination.

Ex.1 : Suppose we want to select two out of three boys A, B, C. Then, possible selections are AB, BC and CA.

Note that AB and BA represent the same selection.

Ex.2 : All the combinations formed by a, b, c taking ab, bc, ca.

Ex.3 : The only combination that can be formed of three letters a, b, c taken all at a time is abc.

Ex.4 : Various groups of 2 out of four persons A, B, C, D are : AB, AC, AD, BC, BD, CD.

Ex.5 : Note that ab ba are two different permutations but they represent the same combination.

**Number of Combinations:** The number of all combinations of n things, taken r at a time is:

$C_{r}^{n}=\frac{n!}{(r!)(n-r)!}=\frac{n\left(n-1\right)\left(n-2\right)....torfactors}{r!}$

Note : (i)$C_{n}^{n}=1andC_{0}^{n}=1$ (ii)$C_{r}^{n}=C_{(n-r)}^{n}$

Examples : (i) $C_{4}^{11}=\frac{11\times 10\times 9\times 8}{4\times 3\times 2\times 1}=330$ (ii)$C_{13}^{16}=C_{(16-13)}^{16}=C_{3}^{16}=560$

A) 4050 | B) 3600 |

C) 1200 | D) 5040 |

Explanation:

'LOGARITHMS' contains 10 different letters.

Required number of words = Number of arrangements of 10 letters, taking 4 at a time.

= $10{P}_{4}$

= 5040.

A) 216 | B) 45360 |

C) 1260 | D) 43200 |

Explanation:

There are total 9 letters in the word COMMITTEE in which there are 2M's, 2T's, 2E's.

The number of ways in which 9 letters can be arranged = $\frac{9!}{2!\times 2!\times 2!}$ = 45360

There are 4 vowels O,I,E,E in the given word. If the four vowels always come together, taking them as one letter we have to arrange 5 + 1 = 6 letters which include 2Ms and 2Ts and this be done in $\frac{6!}{2!\times 2!}$ = 180 ways.

In which of 180 ways, the 4 vowels O,I,E,E remaining together can be arranged in $\frac{4!}{2!}$ = 12 ways.

The number of ways in which the four vowels always come together = 180 x 12 = 2160.

Hence, the required number of ways in which the four vowels do not come together = 45360 - 2160 = 43200

A) 135 | B) 63 |

C) 125 | D) 64 |

Explanation:

Required number of ways = $(7{C}_{5}*3{C}_{2})=(7{C}_{2}*3{C}_{1})=63$

A) 1024 | B) 1900 |

C) 2000 | D) 1092 |

Explanation:

We are to choose 11 players including 1 wicket keeper and 4 bowlers or, 1 wicket keeper and 5 bowlers.

Number of ways of selecting 1 wicket keeper, 4 bowlers and 6 other players in $2{C}_{1}*5{C}_{4}*9{C}_{6}$ = 840

Number of ways of selecting 1 wicket keeper, 5 bowlers and 5 other players in $2{C}_{1}*5{C}_{5}*9{C}_{5}$ =252

Total number of ways of selecting the team = 840 + 252 = 1092

A) 3 | B) 6 |

C) 2 | D) 4 |

Explanation:

You need two points to draw a line. The order is not important. Line AB is the same as line BA. The problem is to select 2 points out of 3 to draw different lines. If we proceed as we did with permutations, we get the following pairs of points to draw lines.

AB , AC

BA , BC

CA , CB

There is a problem: line AB is the same as line BA, same for lines AC and CA and BC and CB.

The lines are: AB, BC and AC ; 3 lines only.

So in fact we can draw 3 lines and not 6 and that's because in this problem the order of the points A, B and C is not important.

A) 620 | B) 671 |

C) 625 | D) 567 |

Explanation:

When 4 dice are rolled simultaneously, there will be a total of 6 x 6 x 6 x 6 = 1296 outcomes.

The number of outcomes in which none of the 4 dice show 3 will be 5 x 5 x 5 x 5 = 625 outcomes.

Therefore, the number of outcomes in which at least one die will show 3 = 1296 – 625 = 671

A) 36 | B) 25 |

C) 42 | D) 120 |

Explanation:

There are 6 letters in the given word, out of which there are 3 vowels and 3 consonants.

Let us mark these positions as under:

(1) (2) (3) (4) (5) (6)

Now, 3 vowels can be placed at any of the three places out 4, marked 1, 3, 5.

Number of ways of arranging the vowels = $3{P}_{3}$ = 3! = 6.

Also, the 3 consonants can be arranged at the remaining 3 positions.

Number of ways of these arrangements = $3{P}_{3}$ = 3! = 6.

Total number of ways = (6 x 6) = 36.

A) 53400 | B) 17610 |

C) 11760 | D) 45000 |

Explanation:

Required number of ways = $\left(8{C}_{5}*10{C}_{6}\right)$ = $\left(8{C}_{3}*10{C}_{4}\right)$ = 11760