A) Rs. 704 | B) Rs. 854 |

C) Rs. 893 | D) Rs. 914 |

Explanation:

We know that,

$\mathbf{S}\mathbf{.}\mathbf{I}\mathbf{.}\mathbf{}\mathbf{=}\mathbf{}\frac{\mathbf{PTR}}{\mathbf{100}}\phantom{\rule{0ex}{0ex}}\mathbf{\Rightarrow}\mathbf{}\mathbf{P}\mathbf{}\mathbf{=}\mathbf{}\frac{\mathbf{S}\mathbf{.}\mathbf{I}\mathbf{}\mathbf{x}\mathbf{}\mathbf{100}}{\mathbf{T}\mathbf{}\mathbf{x}\mathbf{}\mathbf{R}}\phantom{\rule{0ex}{0ex}}\mathbf{And}\mathbf{}\mathbf{also}\mathbf{,}\phantom{\rule{0ex}{0ex}}\mathbf{C}\mathbf{.}\mathbf{I}\mathbf{}\mathbf{=}\mathbf{}\mathbf{P}\left[{\left(\mathbf{1}\mathbf{}\mathbf{+}\mathbf{}\frac{\mathbf{R}}{\mathbf{100}}\right)}^{\mathbf{n}}\mathbf{-}\mathbf{}\mathbf{1}\right]$

From given data, P = Rs. 8625

Now, C.I = $\mathbf{8625}\left[{\left(\mathbf{1}\mathbf{+}\frac{\mathbf{4}}{\mathbf{100}}\right)}^{\mathbf{2}}\mathbf{-}\mathbf{1}\right]\phantom{\rule{0ex}{0ex}}=8625\left[{\left(\frac{26}{25}\right)}^{2}-1\right]\phantom{\rule{0ex}{0ex}}=8625\left[\frac{676}{625}-1\right]\phantom{\rule{0ex}{0ex}}=8625\mathrm{x}\frac{51}{625}\phantom{\rule{0ex}{0ex}}\mathbf{C}\mathbf{.}\mathbf{I}\mathbf{}\mathbf{=}\mathbf{}\mathbf{Rs}\mathbf{.}\mathbf{}\mathbf{703}\mathbf{.}\mathbf{80}$

A) Rs.2628 | B) Rs.2662 |

C) Rs.2600 | D) Rs.3200 |

A) Rs.400 | B) Rs.390 |

C) Rs.380 | D) Rs.350 |

A) Rs. 2000 | B) Rs. 2050 |

C) Rs. 2100 | D) Rs. 2150 |

A) 21750 | B) 22050 |

C) 23250 | D) 24650 |

A) Rs.9000 | B) Rs.9500 |

C) Rs.10,000 | D) Rs.10,500 |

A) 3 years | B) 4 years |

C) 2 years | D) 1 year |