# Aptitude and Reasoning Questions

A) 4% of a | B) 6% of a |

C) 8% of a | D) 10% of a |

Explanation:

20% of a = b

=> (20/100) * a = b

b% of 20 =(b/100) x 20 = [(20a/100) / 100] x 20= 4a/100 = 4% of a.

A) 391 | B) 421 |

C) 481 | D) 511 |

Explanation:

Numbers are (2^{3} - 1), (3^{3} - 1), (4^{3} - 1), (5^{3} - 1), (6^{3} - 1), (7^{3} - 1) etc.

So, the next number is (8^{3} - 1) = (512 - 1) = 511.

A) 18 litres | B) 24 litres |

C) 32 litres | D) 42 litres |

Explanation:

Let the quantity of the wine in the cask originally be x litres

Then, quantity of wine left in cask after 4 operations =$\left[x{\left(1-\frac{8}{x}\right)}^{4}\right]$litres

$\therefore \left[\frac{x{\left(1-{\displaystyle \frac{8}{x}}\right)}^{4}}{x}\right]=\frac{16}{81}$

$\Rightarrow {\left[1-\frac{8}{x}\right]}^{4}={\left(\frac{2}{3}\right)}^{4}$

$\Rightarrow x=24$

A) 50 | B) 37 |

C) 26 | D) 64 |

Explanation:

(1*1)+1 , (2*2)+1 , (3*3)+1 , (4*4)+1 , (5*5)+1 , (6*6)+1 , (7*7)+1 , (8*8)+1

But, 64 is out of pattern.

A) 48 min. past 12. | B) 46 min. past 12. |

C) 45 min. past 12. | D) 47 min. past 12. |

Explanation:

Time from 8 a.m. on a day to 1 p.m. on the following day = 29 hours.

24 hours 10 min. of this clock = 24 hours of the correct clock.

$\frac{145}{6}$ hrs of this clock = 24 hours of the correct clock.

29 hours of this clock = $24*\frac{6}{145}*29$ hrs of the correct clock

= 28 hrs 48 min of the correct clock.

Therefore, the correct time is 28 hrs 48 min. after 8 a.m.

This is 48 min. past 12.

A) 25200 | B) 52000 |

C) 120 | D) 24400 |

Explanation:

Number of ways of selecting (3 consonants out of 7) and (2 vowels out of 4) = ($7{C}_{3}$*$4{C}_{2}$)

= 210.

Number of groups, each having 3 consonants and 2 vowels = 210.

Each group contains 5 letters.

Number of ways of arranging 5 letters among themselves = 5! = 120

Required number of ways = (210 x 120) = 25200.

A) 65.25 | B) 56.25 |

C) 65 | D) 56 |

Explanation:

let each side of the square be a , then area = ${a}^{2}$

As given that The side is increased by 25%, then

New side = 125a/100 = 5a/4

New area = ${\left(\frac{5a}{4}\right)}^{2}$

Increased area= $\frac{25{a}^{2}}{16}-{a}^{2}$

Increase %=$\frac{\left[9{a}^{2}/16\right]}{{a}^{2}}*100$ % = 56.25%

A) 11 days | B) 12 days |

C) 13 days | D) 14 days |

Explanation:

One day's work of A, B and C = (1/24 + 1/30 + 1/40) = 1/10.

C leaves 4 days before completion of the work, which means only A and B work during the last 4 days.

Work done by A and B together in the last 4 days = 4 (1/24 + 1/30) = 3/10.

Remaining Work = 7/10, which was done by A,B and C in the initial number of days.

Number of days required for this initial work = 7 days.

Thus, the total numbers of days required = 4 + 7 = 11 days.